Neural End-to-End Learning for Computational Argumentation Mining

被引:88
|
作者
Eger, Steffen [1 ,2 ]
Daxenberger, Johannes [1 ]
Gurevych, Iryna [1 ,2 ]
机构
[1] Tech Univ Darmstadt, Dept Comp Sci, Ubiquitous Knowledge Proc Lab UKP TUDA, Darmstadt, Germany
[2] German Inst Educ Res & Educ Informat, Ubiquitous Knowledge Proc Lab UKP DIPF, Frankfurt, Germany
来源
PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1 | 2017年
关键词
D O I
10.18653/v1/P17-1002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate neural techniques for end-to-end computational argumentation mining (AM). We frame AM both as a token-based dependency parsing and as a token-based sequence tagging problem, including a multi-task learning setup. Contrary to models that operate on the argument component level, we find that framing AM as dependency parsing leads to subpar performance results. In contrast, less complex (local) tagging models based on BiL-STMs perform robustly across classification scenarios, being able to catch long-range dependencies inherent to the AM problem. Moreover, we find that jointly learning 'natural' subtasks, in a multi-task learning setup, improves performance.
引用
收藏
页码:11 / 22
页数:12
相关论文
共 50 条
  • [1] Learning Neural Models for End-to-End Clustering
    Meier, Benjamin Bruno
    Elezi, Ismail
    Amirian, Mohammadreza
    Duerr, Oliver
    Stadelmann, Thilo
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, ANNPR 2018, 2018, 11081 : 126 - 138
  • [2] End-to-End Argumentation Knowledge Graph Construction
    Al-Khatib, Khalid
    Hou, Yufang
    Wachsmuth, Henning
    Jochim, Charles
    Bonin, Francesca
    Stein, Benno
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 7367 - 7374
  • [3] Neural Dynamic Policies for End-to-End Sensorimotor Learning
    Bahl, Shikhar
    Mukadam, Mustafa
    Gupta, Abhinav
    Pathak, Deepak
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [4] End-to-end learning of user equilibrium with implicit neural networks
    Liu, Zhichen
    Yin, Yafeng
    Bai, Fan
    Grimm, Donald K.
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2023, 150
  • [5] LEARNING ENVIRONMENTAL SOUNDS WITH END-TO-END CONVOLUTIONAL NEURAL NETWORK
    Tokozume, Yuji
    Harada, Tatsuya
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2721 - 2725
  • [6] End-to-End Incremental Learning
    Castro, Francisco M.
    Marin-Jimenez, Manuel J.
    Guil, Nicolas
    Schmid, Cordelia
    Alahari, Karteek
    COMPUTER VISION - ECCV 2018, PT XII, 2018, 11216 : 241 - 257
  • [7] End-to-End Learning for OFDM: From Neural Receivers to Pilotless Communication
    Aoudia, Faycal Ait
    Hoydis, Jakob
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (02) : 1049 - 1063
  • [8] DeepChess :End-to-End Deep Neural Network for Automatic Learning in Chess
    David, Omid E.
    Netanyahu, Nathan S.
    Wolf, Lior
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT II, 2016, 9887 : 88 - 96
  • [9] An End-to-End Multiplex Graph Neural Network for Graph Representation Learning
    Liang, Yanyan
    Zhang, Yanfeng
    Gao, Dechao
    Xu, Qian
    IEEE ACCESS, 2021, 9 : 58861 - 58869
  • [10] Convolutional Dictionary Learning by End-To-End Training of Iterative Neural Networks
    Kofler, Andreas
    Wald, Christian
    Schaeffter, Tobias
    Haltmeier, Markus
    Kolbitsch, Christoph
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1213 - 1217