Some conjectures of Graffiti.pc on the total domination number of a tree

被引:0
作者
Jiang, Hongxing [1 ]
机构
[1] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou 325035, Peoples R China
关键词
Graffiti.pc; Total dominating set; Total domination number; tree; GRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set S of vertices in a graph G = (V, E) is a total dominating set of G if every vertex of G is adjacent to a vertex in S. The total domination number of G, denoted by gamma(t)(G), is the minimum cardinality of a total dominating set of G. Graffiti.pc is a program that makes graph theoretical conjectures. In 2009, DeLaVina used Graffiti.pc to generate conjectures involving the total domination number of a tree. In this paper, we discuss and resolve several of these conjectures also provided in [6].
引用
收藏
页码:33 / 42
页数:10
相关论文
共 8 条
[1]   Extremal graphs for a new upper bound on domination parameters in graphs [J].
Blidia, Mostafa ;
Chellali, Mustapha ;
Maffray, Frederic .
DISCRETE MATHEMATICS, 2006, 306 (19-20) :2314-2326
[2]   TOTAL DOMINATION IN GRAPHS [J].
COCKAYNE, EJ ;
DAWES, RM ;
HEDETNIEMI, ST .
NETWORKS, 1980, 10 (03) :211-219
[3]  
DeLaVina E., 2007, Congressus Numer, V185, P81
[4]  
DeLaVina E., Written on the wall II
[5]  
DeLaVina E., 2009, C NUMERANTIUM, V195, P5
[6]  
Haynes T. W., 1998, Chapman & Hall/CRC Pure and Applied Mathematics
[7]  
Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]
[8]  
Shan E., 2004, Australas. J. Comb, P31