Operators with bounded conjugation orbits

被引:7
作者
Drissi, D
Mbekhta, M
机构
[1] Kuwait Univ, Fac Sci, Dept Math & Comp Sci, Safat 13060, Kuwait
[2] Univ Lille 1, UFR Math, F-59655 Villeneuve Dascq, France
[3] Univ Lille 1, CNRS, URA 751, F-59655 Villeneuve Dascq, France
[4] Univ Galatasaray, TR-80840 Istanbul, Turkey
关键词
bounded conjugation orbit; spectrum; spectral radius;
D O I
10.1090/S0002-9939-00-05338-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a bounded invertible operator A on a complex Banach space X, let B-A be the set of operators T in L(X) for which sup(n greater than or equal to 0) parallel to A(n)TA(-n) parallel to < infinity. Suppose that Sp(A) = {1} and T is in B-A boolean AND BA-1. A bound is given on parallel to AT A(-1) - T parallel to in terms of the spectral radius of the commutator. Replacing the condition T in BA-1 by the weaker condition parallel to A(-n)TA(n)parallel to = o(e(epsilon root n)), as n --> infinity for every epsilon > 0, an extension of the Deddens-Stampfli-Williams results on the commutant of A is given.
引用
收藏
页码:2687 / 2691
页数:5
相关论文
共 10 条
[1]  
Boas R. P., 1954, PURE APPL MATH, V5
[2]  
Deddens J. A., 1978, Lecture Notes in Math., V693, P77
[3]  
Levin B. Y., 1996, Lectures on entire functions, V150
[4]  
LEVIN BY, 1964, DISTRIBUTIONS ZEROS
[5]  
Lumer G., 1961, Pac. J. Math., V11, P679, DOI [10.2140/pjm.1961.11.679, DOI 10.2140/PJM.1961.11.679]
[6]   BOUNDED ORBITS OF CONJUGATION, ANALYTIC THEORY [J].
ROTH, PG .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (04) :491-509
[7]  
Rudin W., 1966, Real and complex analysis
[8]  
Stampfli J.G., 1978, LECT NOTES MATH, V693, P169
[9]  
STAMPFLI JG, 1968, TOHOKU MATH J, V20, P417