The Laplacian spectral radius of bicyclic graphs with a given girth

被引:5
作者
Zhai, Mingping [1 ,2 ]
Yu, Guanglong [1 ]
Shu, Jinlong [1 ,3 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[2] Chuzhou Univ, Dept Math, Chuzhou 239012, Anhui, Peoples R China
[3] E China Normal Univ, Key Lab Geog Informat Sci, Minist Educ, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Bicyclic graph; Laplacian spectral radius; Girth; EIGENVALUES; TREES;
D O I
10.1016/j.camwa.2009.07.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let B(n, g) be the class of bicyclic graphs on n vertices with girth g. Let B-1(n, g) be the subclass of B(n, g) consisting of all bicyclic graphs with two edge-disjoint cycles and B-2(n, g) = B(n, g) backslash B-1 (n, g). This paper determines the unique graph with the maximal Laplacian spectral radius among all graphs in B-1(n, g) and B-2(n, g), respectively. Furthermore, the upper bound of the Laplacian spectral radius and the extremal graph for B(n, g) are also obtained. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:376 / 381
页数:6
相关论文
共 12 条