Primary hyperoxaluria type 1: novel therapies at a glance

被引:19
作者
Bacchetta, Justine [1 ,2 ,3 ,4 ]
Lieske, John C. [5 ,6 ]
机构
[1] Serv Nephrol, Serv Nephrol Rhumatol & Dermatol Pediat, Ctr Reference Malad Renales Rares Nephrogones, Filieres Malad Rares ORKID, Bron, France
[2] Serv Nephrol, ERK Net, Bron, France
[3] Univ Claude Bernard Lyon 1, Fac Med Lyon Est, INSERM 1033, Lyon, France
[4] Univ Claude Bernard Lyon 1, Fac Med Lyon Est, Lyon, France
[5] Mayo Clin, Div Nephrol & Hypertens, Rochester, MN USA
[6] Mayo Clin, Dept Lab Med & Pathol, Rochester, MN USA
关键词
glycolate oxidase; hyperoxaluria; LDH-A; paediatrics; RNA interference; INTERFERENCE; RNA;
D O I
10.1093/ckj/sfab245
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Primary hyperoxaluria type 1 (PH1) is a rare and severe autosomal recessive disease of oxalate metabolism, resulting from a mutation in the AGXT gene that encodes the hepatic peroxisomal enzyme alanine-glyoxylate aminotransferase (AGT). Until recently, treatment of PH1 was supportive, consisting of intensive hyperhydration, use of crystallization inhibitors (citrate and neutral phosphorus), in a subset of responsive PH1 patients' pharmacologic doses of vitamin B6 (pyridoxine), and kidney and liver transplantation when patients progressed to kidney failure. Treatment approaches have been similar for PH2 caused by mutations in hepatic glyoxylate reductase/hydroxypyruvate reductase (GR/HPR), although pyridoxine does not have any benefit in this group. PH3 is caused by mutations of mitochondrial 4-hydroxy-2-oxoglutarate aldolase (HOGA1) and was the most recently described. Kidney failure appears less common in PH3, although kidney stones occur as frequently as in PH1 and PH2. Oxalate metabolism in the liver is complex. Novel therapies based on RNA interference (RNAi) have recently emerged to modulate these pathways, designed to deplete substrate for enzymes upstream and decrease/avoid oxalate production. Two hepatic enzymes have been targeted to date in PH: glycolate oxidase (GO) with lumasiran and lactate dehydrogenase A (LDH-A) with nedosiran. Lumasiran was approved for the treatment of PH1 in 2020 by both the European Medicines Agency and the Food and Drug Administration, whilst clinical trials with nedosiran are ongoing. Results with the two RNAi therapies demonstrate a significant reduction of urinary oxalate excretion in PH1 patients, but long-term data on efficacy (preservation of kidney function, decreased stone events) and safety remain to be established. Nevertheless, the hepatically targeted RNAi approach represents a potential 'game changer' in the field of PH1, bringing hope to families and patients that they may be able to avoid liver and/or kidney transplantation in the future and suffer fewer stone events, perhaps with less strict therapeutic regimens. Pharmacological compounds directly inhibiting GO or LDH are also under development and could be of special interest in developing countries where RNAi therapies may not be readily available in the near future. Approaches to manipulate the intestinal microbiome with a goal to increase oxalate degradation or to stimulate secretion of oxalate into the intestine from plasma are also under development. Overall, we appear to be entering a new phase of PH treatment, with an array of promising approaches emerging that will need optimization and evaluation to establish long-term efficacy and safety.
引用
收藏
页码:i17 / i22
页数:6
相关论文
共 29 条
[1]   Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis [J].
Adams, D. ;
Gonzalez-Duarte, A. ;
O'Riordan, W. D. ;
Yang, C. -C. ;
Ueda, M. ;
Kristen, A. V. ;
Tournev, I. ;
Schmidt, H. H. ;
Coelho, T. ;
Berk, J. L. ;
Lin, K. -P. ;
Vita, G. ;
Attarian, S. ;
Plante-Bordeneuve, V. ;
Mezei, M. M. ;
Campistol, J. M. ;
Buades, J. ;
Brannagan, T. H., III ;
Kim, B. J. ;
Oh, J. ;
Parman, Y. ;
Sekijima, Y. ;
Hawkins, P. N. ;
Solomon, S. D. ;
Polydefkis, M. ;
Dyck, P. J. ;
Gandhi, P. J. ;
Goyal, S. ;
Chen, J. ;
Strahs, A. L. ;
Nochur, S. V. ;
Sweetser, M. T. ;
Garg, P. P. ;
Vaishnaw, A. K. ;
Gollob, J. A. ;
Suhr, O. B. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (01) :11-21
[2]   Hepatic Lactate Dehydrogenase A: An RNA Interference Target for the Treatment of All Known Types of Primary Hyperoxaluria [J].
Ariceta, Gema ;
Barrios, Kelly ;
Brown, Bob D. ;
Hoppe, Bernd ;
Rosskamp, Ralf ;
Langman, Craig B. .
KIDNEY INTERNATIONAL REPORTS, 2021, 6 (04) :1088-1098
[3]   Oxalobacter formigenes-Derived Bioactive Factors Stimulate Oxalate Transport by Intestinal Epithelial Cells [J].
Arvans, Donna ;
Jung, Yong-Chul ;
Antonopoulos, Dionysios ;
Koval, Jason ;
Granja, Ignacio ;
Bashir, Mohamed ;
Karrar, Eltayeb ;
Roy-Chowdhury, Jayanta ;
Musch, Mark ;
Asplin, John ;
Chang, Eugene ;
Hassan, Hatim .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2017, 28 (03) :876-887
[4]   Phase 3 Trial of RNAi Therapeutic Givosiran for Acute Intermittent Porphyria [J].
Balwani, Manisha ;
Sardh, Eliane ;
Ventura, Paolo ;
Peiro, Paula Aguilera ;
Rees, David C. ;
Stoelzel, Ulrich ;
Bissell, D. Montgomery ;
Bonkovsky, Herbert L. ;
Windyga, Jerzy ;
Anderson, Karl E. ;
Parker, Charles ;
Silver, Samuel M. ;
Keel, Sioban B. ;
Wang, Jiaan-Der ;
Stein, Penelope E. ;
Harper, Pauline ;
Vassiliou, Daphne ;
Wang, Bruce ;
Phillips, John ;
Ivanova, Aneta ;
Langendonk, Janneke G. ;
Kauppinen, Raili ;
Minder, Elisabeth ;
Horie, Yutaka ;
Penz, Craig ;
Chen, Jihong ;
Liu, Shangbin ;
Ko, John J. ;
Sweetser, Marianne T. ;
Garg, Pushkal ;
Vaishnaw, Akshay ;
Kim, Jae B. ;
Simon, Amy R. ;
Gouya, Laurent .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (24) :2289-2301
[5]   Primary Hyperoxaluria [J].
Cochat, Pierre ;
Rumsby, Gill .
NEW ENGLAND JOURNAL OF MEDICINE, 2013, 369 (07) :649-658
[6]   Primary hyperoxaluria Type 1: indications for screening and guidance for diagnosis and treatment [J].
Cochat, Pierre ;
Hulton, Sally-Anne ;
Acquaviva, Cecile ;
Danpure, Christopher J. ;
Daudon, Michel ;
De Marchi, Mario ;
Fargue, Sonia ;
Groothoff, Jaap ;
Harambat, Jerome ;
Hoppe, Bernd ;
Jamieson, Neville V. ;
Kemper, Markus J. ;
Mandrile, Giorgia ;
Marangella, Martino ;
Picca, Stefano ;
Rumsby, Gill ;
Salido, Eduardo ;
Straub, Michael ;
van Woerden, Christiaan S. .
NEPHROLOGY DIALYSIS TRANSPLANTATION, 2012, 27 (05) :1729-1736
[7]   Molecular basis of primary hyperoxaluria: clues to innovative treatments [J].
Dindo, Mirco ;
Conter, Carolina ;
Oppici, Elisa ;
Ceccarelli, Veronica ;
Marinucci, Lorella ;
Cellini, Barbara .
UROLITHIASIS, 2019, 47 (01) :67-78
[8]   Small Molecule-Based Enzyme Inhibitors in the Treatment of Primary Hyperoxalurias [J].
Dolores Moya-Garzon, Maria ;
Antonio Gomez-Vidal, Jose ;
Alejo-Armijo, Alfonso ;
Altarejos, Joaquin ;
Roberto Rodriguez-Madoz, Juan ;
Xavier Fernandes, Miguel ;
Salido, Eduardo ;
Salido, Sofia ;
Diaz-Gavilan, Monica .
JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (02) :1-31
[9]   Targeted gene therapy in human-induced pluripotent stem cells from a patient with primary hyperoxaluria type 1 using CRISPR/Cas9 technology [J].
Esteve, Julie ;
Blouin, Jean-Marc ;
Lalanne, Magalie ;
Azzi-Martin, Lamia ;
Dubus, Pierre ;
Bidet, Audrey ;
Harambat, Jerome ;
Llanas, Brigitte ;
Moranvillier, Isabelle ;
Bedel, Aurelie ;
Moreau-Gaudry, Francois ;
Richard, Emmanuel .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2019, 517 (04) :677-683
[10]   Effect of conservative treatment on the renal outcome of children with primary hyperoxaluria type 1 [J].
Fargue, Sonia ;
Harambat, Jerome ;
Gagnadoux, Marie-France ;
Tsimaratos, Michel ;
Janssen, Francoise ;
Llanas, Brigitte ;
Bertheleme, Jean-Pierre ;
Boudailliez, Bernard ;
Champion, Gerard ;
Guyot, Claude ;
Macher, Marie-Alice ;
Nivet, Hubert ;
Ranchin, Bruno ;
Salomon, Remi ;
Taque, Sophie ;
Rolland, Marie-Odile ;
Cochat, Pierre .
KIDNEY INTERNATIONAL, 2009, 76 (07) :767-773