Analytical Model of Unconstrained Non local Higher-order Nano-plates for Bending Analysis

被引:1
作者
Niu, Junchuan [1 ,2 ]
Lim, C. W. [3 ]
Leung, A. Y. T. [3 ]
机构
[1] Shandong Univ, Sch Mech Engn, Jinan 250100, Peoples R China
[2] Shandong Univ, Minist Educ, Key Lab High Efficiency & Clean Mech Mfg, Jinan, Shandong, Peoples R China
[3] City Univ Hong Kong, Dept Bldg & Construct, Hong Kong, Peoples R China
来源
MANUFACTURING SCIENCE AND ENGINEERING, PTS 1-5 | 2010年 / 97-101卷
关键词
Higher-order Plate Theory; Nano-plate; Nonlocal Elasticity; Bending Analysis;
D O I
10.4028/www.scientific.net/AMR.97-101.4193
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a higher-order nonlocal plate model and its formulation for bending analysis of nanoplates via variational principle and virtual work approach based on Leung's unconstrained higher-order plate theory and Eringen's nonlocal continuum theory. Bending of the simply supported rectangular higher-order nano-plate is investigated in comparison with the lower-order plate models. The numerical examples show that nonlocal nanoscale parameters increase the deflections of the plate as the rotary inertia and the transverse shear deformation do.
引用
收藏
页码:4193 / +
页数:2
相关论文
共 13 条
[1]  
Duan WH, 2007, NANOTECHNOLOGY, V18, DOI [10.1088/0957-4484/18/38/385704, 10.1088/0957-4484/18/38/385301]
[2]   NONLOCAL ELASTICITY [J].
ERINGEN, AC ;
EDELEN, DGB .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1972, 10 (03) :233-&
[3]   NONLOCAL POLAR ELASTIC CONTINUA [J].
ERINGEN, AC .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1972, 10 (01) :1-&
[4]   Resonance analysis of multi-layered graphene sheets used as nanoscale resonators [J].
He, XQ ;
Kitipornchai, S ;
Liew, KM .
NANOTECHNOLOGY, 2005, 16 (10) :2086-2091
[5]   Continuum model for the vibration of multilayered graphene sheets [J].
Kitipornchai, S ;
He, XQ ;
Liew, KM .
PHYSICAL REVIEW B, 2005, 72 (07)
[6]   A new unconstrained third-order plate theory for Navier solutions of symmetrically laminated plates [J].
Leung, AYT ;
Niu, JC ;
Lim, CW ;
Song, KJ .
COMPUTERS & STRUCTURES, 2003, 81 (26-27) :2539-2548
[7]   Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams [J].
Lim, C. W. ;
Wang, C. M. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (05)
[8]   A HIGHER-ORDER THEORY FOR VIBRATION OF SHEAR-DEFORMABLE CYLINDRICAL SHALLOW SHELLS [J].
LIM, CW ;
LIEW, KM .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1995, 37 (03) :277-295
[9]   Non-local elastic plate theories [J].
Lu, Pin ;
Zhang, P. Q. ;
Lee, H. P. ;
Wang, C. M. ;
Reddy, J. N. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2088) :3225-3240
[10]  
NIU JC, 2009, J MECH ENG IN PRESS, V223