Fractional chemotaxis diffusion equations

被引:66
作者
Langlands, T. A. M. [1 ]
Henry, B. I. [2 ]
机构
[1] Univ So Queensland, Dept Math & Comp, Toowoomba, Qld 4350, Australia
[2] Univ New S Wales, Sch Math, Dept Appl Math, Sydney, NSW 2052, Australia
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 05期
基金
澳大利亚研究理事会;
关键词
TIME RANDOM-WALKS; FOKKER-PLANCK EQUATIONS; ANOMALOUS DIFFUSION; SUBDIFFUSION; CELLS; RECOVERY; PROTEIN;
D O I
10.1103/PhysRevE.81.051102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce mesoscopic and macroscopic model equations of chemotaxis with anomalous subdiffusion for modeling chemically directed transport of biological organisms in changing chemical environments with diffusion hindered by traps or macromolecular crowding. The mesoscopic models are formulated using continuous time random walk equations and the macroscopic models are formulated with fractional order differential equations. Different models are proposed depending on the timing of the chemotactic forcing. Generalizations of the models to include linear reaction dynamics are also derived. Finally a Monte Carlo method for simulating anomalous subdiffusion with chemotaxis is introduced and simulation results are compared with numerical solutions of the model equations. The model equations developed here could be used to replace Keller-Segel type equations in biological systems with transport hindered by traps, macromolecular crowding or other obstacles.
引用
收藏
页数:12
相关论文
共 54 条
[31]   Angiogenesis and vascular remodelling in normal and cancerous tissues [J].
Owen, Markus R. ;
Alarcon, Tomas ;
Maini, Philip K. ;
Byrne, Helen M. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (4-5) :689-721
[32]   Observation of anomalous diffusion in excised tissue by characterizing the diffusion-time dependence of the MR signal [J].
Ozarslan, Evren ;
Basser, Peter J. ;
Shepherd, Timothy M. ;
Thelwall, Peter E. ;
Vemuri, Baba C. ;
Blackband, Stephen J. .
JOURNAL OF MAGNETIC RESONANCE, 2006, 183 (02) :315-323
[33]  
Podlubny I., 1999, FRACTIONAL DIFFERENT
[34]   A biological interpretation of transient anomalous subdiffusion. I. Qualitative model [J].
Saxton, Michael J. .
BIOPHYSICAL JOURNAL, 2007, 92 (04) :1178-1191
[35]   Anomalous diffusion due to binding: A Monte Carlo study [J].
Saxton, MJ .
BIOPHYSICAL JOURNAL, 1996, 70 (03) :1250-1262
[36]   Anomalous subdiffusion in fluorescence photobleaching recovery: A Monte Carlo study [J].
Saxton, MJ .
BIOPHYSICAL JOURNAL, 2001, 81 (04) :2226-2240
[37]   Revisiting the derivation of the fractional diffusion equation [J].
Scalas, E ;
Gorenflo, R ;
Mainardi, F ;
Raberto, M .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2003, 11 :281-289
[38]   STOCHASTIC TRANSPORT IN A DISORDERED SOLID .1. THEORY [J].
SCHER, H ;
LAX, M .
PHYSICAL REVIEW B, 1973, 7 (10) :4491-4502
[39]   Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane [J].
Sheets, ED ;
Lee, GM ;
Simson, R ;
Jacobson, K .
BIOCHEMISTRY, 1997, 36 (41) :12449-12458
[40]   Structural mosaicism on the submicron scale in the plasma membrane [J].
Simson, R ;
Yang, B ;
Moore, SE ;
Doherty, P ;
Walsh, FS ;
Jacobson, KA .
BIOPHYSICAL JOURNAL, 1998, 74 (01) :297-308