Fractional chemotaxis diffusion equations

被引:66
作者
Langlands, T. A. M. [1 ]
Henry, B. I. [2 ]
机构
[1] Univ So Queensland, Dept Math & Comp, Toowoomba, Qld 4350, Australia
[2] Univ New S Wales, Sch Math, Dept Appl Math, Sydney, NSW 2052, Australia
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 05期
基金
澳大利亚研究理事会;
关键词
TIME RANDOM-WALKS; FOKKER-PLANCK EQUATIONS; ANOMALOUS DIFFUSION; SUBDIFFUSION; CELLS; RECOVERY; PROTEIN;
D O I
10.1103/PhysRevE.81.051102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce mesoscopic and macroscopic model equations of chemotaxis with anomalous subdiffusion for modeling chemically directed transport of biological organisms in changing chemical environments with diffusion hindered by traps or macromolecular crowding. The mesoscopic models are formulated using continuous time random walk equations and the macroscopic models are formulated with fractional order differential equations. Different models are proposed depending on the timing of the chemotactic forcing. Generalizations of the models to include linear reaction dynamics are also derived. Finally a Monte Carlo method for simulating anomalous subdiffusion with chemotaxis is introduced and simulation results are compared with numerical solutions of the model equations. The model equations developed here could be used to replace Keller-Segel type equations in biological systems with transport hindered by traps, macromolecular crowding or other obstacles.
引用
收藏
页数:12
相关论文
共 54 条
[1]   FOKKER-PLANCK EQUATIONS FOR SIMPLE NON-MARKOVIAN SYSTEMS [J].
ADELMAN, SA .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (01) :124-130
[2]  
[Anonymous], 1974, MATH SCI ENG
[3]   Anomalous diffusion of proteins due to molecular crowding [J].
Banks, DS ;
Fradin, C .
BIOPHYSICAL JOURNAL, 2005, 89 (05) :2960-2971
[4]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[5]   Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery [J].
Brown, EB ;
Wu, ES ;
Zipfel, W ;
Webb, WW .
BIOPHYSICAL JOURNAL, 1999, 77 (05) :2837-2849
[6]   CALCIUM GRADIENTS UNDERLYING POLARIZATION AND CHEMOTAXIS OF EOSINOPHILS [J].
BRUNDAGE, RA ;
FOGARTY, KE ;
TUFT, RA ;
FAY, FS .
SCIENCE, 1991, 254 (5032) :703-706
[7]   Fractional diffusion in inhomogeneous media [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (42) :L679-L684
[8]   Crowding effects on diffusion in solutions and cells [J].
Dix, James A. ;
Verkman, A. S. .
ANNUAL REVIEW OF BIOPHYSICS, 2008, 37 :247-263
[9]  
Dusenbery D. B., 1992, Sensory Ecology: How Organisms Acquire and Respond to Information
[10]   Constrained diffusion or immobile fraction on cell surfaces: A new interpretation [J].
Feder, TJ ;
BrustMascher, I ;
Slattery, JP ;
Baird, B ;
Webb, WW .
BIOPHYSICAL JOURNAL, 1996, 70 (06) :2767-2773