Marine biomass-derived composite aerogels for efficient and durable solar-driven interfacial evaporation and desalination

被引:109
|
作者
Yang, Lin [1 ]
Li, Na [1 ]
Guo, Cui [2 ,3 ]
He, Jintao [1 ]
Wang, Shuxue [1 ]
Qiao, Lifang [1 ]
Li, Fangbin [1 ]
Yu, Liangmin [4 ,5 ]
Wang, Min [2 ,3 ]
Xu, Xiaofeng [1 ]
机构
[1] Ocean Univ China, Coll Mat Sci & Engn, Qingdao 266100, Peoples R China
[2] Ocean Univ China, Coll Marine Life Sci, Qingdao 266003, Peoples R China
[3] Ocean Univ China, Inst Evolut & Marine Biodivers, Qingdao 266003, Peoples R China
[4] Ocean Univ China, Key Lab Marine Chem Theory & Technol, Minist Educ, Qingdao 266100, Peoples R China
[5] Pilot Natl Lab Marine Sci & Technol, Open Studio Marine Corros & Protect, Qingdao 266237, Peoples R China
关键词
Marine biomass; Ulva prolifera; Solar interfacial evaporation; Solar desalination; Water purification; HIGHLY EFFICIENT; WATER EVAPORATION; YELLOW SEA; SPONGE; NANOCOMPOSITE; HYDROGELS; PROLIFERA;
D O I
10.1016/j.cej.2020.128051
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Solar-driven interfacial evaporation is an emerging and sustainable technology with growing potential for applications in water distillation and desalination. Despite the ongoing progress in clean water production, the high cost, delicate structures, leaching and disposal of synthetic materials remain the major roadblocks toward large-scale and real-world applications. Herein, nanocellulose (NC) is successfully extracted from abundant, inexhaustible and biodegradable biomass Ulva (Enteromorpha) prolifera that collected from the coast of Qingdao, China. Incorporation of polyvinyl alcohol (PVA) into the NC scaffolds and subsequent cross-linking endow the composite aerogels with efficient water diffusion, enhanced mechanical strength and good deformation resistance. The cross-linked composite aerogels can serve as main structural elements and integrate a monolithic, self-floating and durable steam generator. Under one sun, the good water evaporation rate of 1.4 kg m(-2) h(-1) is among the best-performing interfacial steam generators constructed by using cellulose-based materials as structural components. This study demonstrates a new concept of using marine (blue) biomass-derived NC as crude material and building block to construct high-performance and durable interfacial steam generators, synergistically considering clean water production and sustainability of marine ecosystems.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Multifunctional Super-Hydrophilic MXene/Biomass Composite Aerogel Evaporator for Efficient Solar-Driven Desalination and Wastewater Treatment
    Chen, Shilin
    Zheng, Dafeng
    Cen, Qiulan
    Yoo, Chang Geun
    Zhong, Lei
    Yang, Dongjie
    Qiu, Xueqing
    SMALL, 2024, 20 (35)
  • [22] Solar-driven interfacial desalination for simultaneous freshwater and salt generation
    Xu, Jiale
    Wang, Zizhao
    Chang, Chao
    Fu, Benwei
    Tao, Peng
    Song, Chengyi
    Shang, Wen
    Deng, Tao
    DESALINATION, 2020, 484
  • [23] Recyclable and efficient ocean biomass-derived hydrogel photothermal evaporator for thermally-localized solar desalination
    Tian, Yanpei
    Liu, Xiaojie
    Xu, Shilin
    Li, Jiansheng
    Caratenuto, Andrew
    Mu, Ying
    Wang, Ziqi
    Chen, Fangqi
    Yang, Ruizhe
    Liu, Jun
    Minus, Marilyn L.
    Zheng, Yi
    DESALINATION, 2022, 523
  • [24] A Janus porous carbon nanotubes/poly (vinyl alcohol) composite evaporator for efficient solar-driven interfacial water evaporation
    Jian, Hongwei
    Qi, Qingbin
    Wang, Wei
    Yu, Dan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 264
  • [25] Efficient solar-driven interfacial evaporation and desalination using simple, salt-resistant, carbon nanotube-based Janus evaporators
    Ge, Hongyu
    Fang, Zhenhua
    Wu, Suli
    Qiu, Jin
    Liu, Xiaohua
    Zhang, Zhien
    ENERGY, 2024, 306
  • [26] Recent advanced self-propelling salt-blocking technologies for passive solar-driven interfacial evaporation desalination systems
    Sheng, Minhao
    Yang, Yawei
    Bin, Xiaoqing
    Zhao, Shihan
    Pan, Cheng
    Nawaz, Fahad
    Que, Wenxiu
    NANO ENERGY, 2021, 89
  • [27] Evaporation efficiency monitoring device based on biomass photothermal material for salt-resistant solar-driven interfacial evaporation
    Li, Jiyan
    Zhou, Xu
    Chen, Guibiao
    Wang, Fei
    Mao, Jialong
    Long, Yong
    Sun, Hanxue
    Zhu, Zhaoqi
    Liang, Weidong
    Li, An
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 222
  • [28] Recent advances in nanomaterial-based membranes for high-performance solar-driven interfacial evaporation desalination
    Pan, Qingqing
    Li, Haowen
    Du, Yuchen
    Zhang, Yingjie
    Wang, Kai
    Ma, Jun
    Sui, Xiao
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 360
  • [29] Recycling Graphite from Spent Lithium Batteries for Efficient Solar-Driven Interfacial Evaporation to Obtain Clean Water
    Han, Sheng-Jie
    Xu, Lei
    Liu, Pan
    Wu, Jia-Li
    Labiadh, Lazhar
    Fu, Ming-Lai
    Yuan, Baoling
    CHEMSUSCHEM, 2023, 16 (24)
  • [30] Turning trash into treasure: Integrating waste MXene sediment with bagasse into photothermal composite aerogel for efficient solar-driven interfacial evaporation
    Lu, Xiaoyan
    Mu, Chunxia
    Nong, Liqin
    Lan, Changlan
    Tong, Zhangfa
    Huang, Kelei
    CHEMICAL ENGINEERING JOURNAL, 2024, 496