Strategies to double milk production per farm in Argentina: Investment, economics and risk analysis

被引:5
作者
Baudracco, Javier [1 ]
Lazzarini, Belen [2 ]
Rossler, Noelia [3 ]
Gastaldi, Laura [1 ,4 ]
机构
[1] Univ Nacl Litoral, IciAgro Litoral, CONICET, FCA, RP Kreder 2805, RA-3080 Esperanza, Argentina
[2] Univ Nacl Litoral, Fac Ciencias Agr, Santa Fe, Argentina
[3] INTA, EEA Rafaela, Rafaela, Argentina
[4] Inst Nacl Invest Agr INIA, Ruta 50 km 11-5, Colonia, Uruguay
关键词
Stochastic; Intensification; Return on investment; Dairy system; Milk yield; LACTATING DAIRY-COWS; PRODUCTION SYSTEMS; HOLSTEIN; PERFORMANCE; PASTURE; MODEL; MANAGEMENT; YIELD; A-100-YEAR-REVIEW; REPRODUCTION;
D O I
10.1016/j.agsy.2022.103366
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Context: Demand for dairy products is expected to continue driving intensification in dairy systems. Little is known about the productive and economic performance and risk of intensification strategies either within grazing systems or confinement dairy systems in Argentina.cu Objective: This study investigated four strategies to double milk production for the average grazing dairy system of Argentina (BASE), using either grazing or confinement systems. Physical and economic performance and risk associated with each alternative was explored using a modelling approach. Investment of capital required to establish each alternative was estimated. Methods: Four scenarios that double milk production per farm from a BASE scenario were designed and modelled using a whole-farm model named e-Dairy: two grazing dairy systems with different milk yield per cow per year: GR6750 (6750 L/cow per year) and GR7500 (7500 L/cow per year) and two confinement systems, an open dry yard (DRYLOT) and a compost bedded pack (COMPOST). Stochastic budgeting was used to model the combined influence of variation in milk, price and crops yield. Outputs of the stochastic analysis are shown in the form of cumulative distribution functions (CDF). Results and conclusions: All the intensification alternatives increased milk production per ha from 7800 L, in BASE system, to 18,209 and 26,758 L in grazing and confinement systems, respectively. Intensified scenarios required an investment of capital between two and three times higher than the BASE scenario. All scenarios had positive economic results. The BASE scenario showed both the lowest farm operating profit and the lowest return on assets ($99/ha per year and 4.1%, respectively). Intensified grazing systems had the highest return on assets (above 12%), while the COMPOST system showed the highest farm operating profit ($1121/ha per year) and the lowest return on assets (7.5%) of the intensification alternatives explored. According to stochastic simulations, the COMPOST and DRYLOT scenarios would expose farmers to a greater maximum loss than BASE and grazing scenarios when negative farm operating profit occurred. However, cumulative distribution functions of profit showed that they would have higher profit than BASE and grazing scenarios along most of the CDF curve. Significance: Farmers who decide to intensify their systems will have higher profit compared with BASE scenario, but should be prepared to afford higher investment and also to cope with increased variability of profit under price or climate risk. If the switch from a BASE scenario was to be implemented at a national scale, it would impact on surplus milk that might cause significant changes beyond farm gate. Further research is required to investigate the environmental impact of intensification alternatives.
引用
收藏
页数:11
相关论文
共 67 条
[1]   Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina [J].
Alvarez, R ;
Lavado, RS .
GEODERMA, 1998, 83 (1-2) :127-141
[2]  
[Anonymous], 2008, J INT FARM MANAG, V4, P1
[3]  
[Anonymous], 2001, NRC NUTR REQUIREMENT, DOI DOI 10.17226/9825
[4]   Potential for crop production increase in Argentina through closure of existing yield gaps [J].
Aramburu Merlos, Fernando ;
Pablo Monzon, Juan ;
Mercau, Jorge L. ;
Taboada, Miguel ;
Andrade, Fernando H. ;
Hall, Antonio J. ;
Jobbagy, Esteban ;
Cassman, Kenneth G. ;
Grassini, Patricio .
FIELD CROPS RESEARCH, 2015, 184 :145-154
[5]   e-Dairy: a dynamic and stochastic whole-farm model that predicts biophysical and economic performance of grazing dairy systems [J].
Baudracco, J. ;
Lopez-Villalobos, N. ;
Holmes, C. W. ;
Comeron, E. A. ;
Macdonald, K. A. ;
Barry, T. N. .
ANIMAL, 2013, 7 (05) :870-878
[6]   e-Cow: an animal model that predicts herbage intake, milk yield and live weight change in dairy cows grazing temperate pastures, with and without supplementary feeding [J].
Baudracco, J. ;
Lopez-Villalobos, N. ;
Holmes, C. W. ;
Comeron, E. A. ;
Macdonald, K. A. ;
Barry, T. N. ;
Friggens, N. C. .
ANIMAL, 2012, 6 (06) :980-993
[7]   Effects of stocking rate on pasture production, milk production and reproduction of supplemented crossbred Holstein-Jersey dairy cows grazing lucerne pasture [J].
Baudracco, J. ;
Lopez-Villalobos, N. ;
Romero, L. A. ;
Scandolo, D. ;
Maciel, M. ;
Comeron, E. A. ;
Holmes, C. W. ;
Barry, T. N. .
ANIMAL FEED SCIENCE AND TECHNOLOGY, 2011, 168 (1-2) :131-143
[8]  
Baudracco J., 2017, CHIL J AGRIC ANIM SC, V72, P454, DOI [10.4067/S0719-38902017005000501, DOI 10.4067/S0719-38902017005000501]
[9]  
Baudracco J, 2014, Cuantificacion de limitantes productivas en tambos de Argentina: reporte final
[10]  
Berhongaray G., 2020, REV ARGENT PROD AANI, V40, P150