PET image reconstruction: A stopping rule for the MLEM algorithm based on properties of the updating coefficients

被引:44
作者
Gaitanis, Anastasios [6 ]
Kontaxakis, George [4 ,5 ]
Spyrou, George [2 ]
Panayiotakis, George [6 ]
Tzanakos, George [1 ,3 ]
机构
[1] Univ Athens, Dept Phys, Div Nucl & Particle Phys, GR-15771 Athens, Greece
[2] Acad Athens, Biomed Res Fdn, Athens 11527, Greece
[3] Univ Cyprus, Dept Phys, Fac Pure & Appl Sci, CY-1678 Nicosia, Cyprus
[4] Univ Politecn Madrid, ETSI Telecomunicac, Dpto Ingn Elect, Madrid, Spain
[5] Networking Res Ctr Bioengn Biomat & Nanomed CIBER, Madrid, Spain
[6] Univ Patras, Sch Med, Dept Med Phys, Patras 26500, Greece
关键词
PET; Image reconstruction; Monte Carlo; MLEM; Stopping rule; Updating coefficient; POSITRON-EMISSION-TOMOGRAPHY; ITERATIVE RECONSTRUCTION; PHANTOM;
D O I
10.1016/j.compmedimag.2009.07.006
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
An empirical stopping criterion for the 2D-maximum-likelihood expectation-maximization (MLEM) iterative image reconstruction algorithm in positron emission tomography (PET) has been proposed. We have applied the MLEM algorithm on Monte Carlo generated noise-free projection data and studied the properties of the pixel updating coefficients (PUC) in the reconstructed images. Appropriate fitting lead to an analytical expression for the parameterization of the minimum value in the PUC vector for all non-zero pixels for a given number of detected counts, which can be employed as basis for the stopping criterion proposed. These results have been validated with simulated data from real PET images. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:131 / 141
页数:11
相关论文
共 27 条
[1]  
BISSANTZ N, 2006, IEEE MED IM C P
[2]   A maximum likelihood expectation maximization algorithm with thresholding [J].
Chuang, KS ;
Jan, ML ;
Wu, J ;
Lu, JC ;
Chen, S ;
Hsu, CH ;
Fu, YK .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2005, 29 (07) :571-578
[3]  
DODGAS B, 2007, PHYS MED BIOL, V52, P577
[4]   Clinical biomarkers in drug discovery and development [J].
Frank, R ;
Hargreaves, R .
NATURE REVIEWS DRUG DISCOVERY, 2003, 2 (07) :566-580
[5]   Iterative reconstruction methods for high-throughput PET tomographs [J].
Hamill, J ;
Bruckbauer, T .
PHYSICS IN MEDICINE AND BIOLOGY, 2002, 47 (15) :2627-2636
[6]   Positron emission tomography in clinical neurology [J].
Herholz, K ;
Heiss, WD .
MOLECULAR IMAGING AND BIOLOGY, 2004, 6 (04) :239-269
[7]   3-D PHANTOM TO SIMULATE CEREBRAL BLOOD-FLOW AND METABOLIC IMAGES FOR PET [J].
HOFFMAN, EJ ;
CUTLER, PD ;
DIGBY, WM ;
MAZZIOTTA, JC .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1990, 37 (02) :616-620
[8]  
HOLTE S, 1990, IEEE T NUCL SCI, V37
[9]   ACCELERATED IMAGE-RECONSTRUCTION USING ORDERED SUBSETS OF PROJECTION DATA [J].
HUDSON, HM ;
LARKIN, RS .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1994, 13 (04) :601-609
[10]   GATE:: a simulation toolkit for PET and SPECT [J].
Jan, S ;
Santin, G ;
Strul, D ;
Staelens, S ;
Assié, K ;
Autret, D ;
Avner, S ;
Barbier, R ;
Bardiès, M ;
Bloomfield, PM ;
Brasse, D ;
Breton, V ;
Bruyndonckx, P ;
Buvat, I ;
Chatziioannou, AF ;
Choi, Y ;
Chung, YH ;
Comtat, C ;
Donnarieix, D ;
Ferrer, L ;
Glick, SJ ;
Groiselle, CJ ;
Guez, D ;
Honore, PF ;
Kerhoas-Cavata, S ;
Kirov, AS ;
Kohli, V ;
Koole, M ;
Krieguer, M ;
van der Laan, DJ ;
Lamare, F ;
Largeron, G ;
Lartizien, C ;
Lazaro, D ;
Maas, MC ;
Maigne, L ;
Mayet, F ;
Melot, F ;
Merheb, C ;
Pennacchio, E ;
Perez, J ;
Pietrzyk, U ;
Rannou, FR ;
Rey, M ;
Schaart, DR ;
Schmidtlein, CR ;
Simon, L ;
Song, TY ;
Vieira, JM ;
Visvikis, D .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (19) :4543-4561