Temperature Dependence of Lithium Anode Voiding in Argyrodite Solid-State Batteries

被引:62
作者
Jolly, Dominic Spencer [1 ,2 ,3 ,4 ]
Ning, Ziyang [1 ,2 ,3 ,4 ]
Hartley, Gareth O. [1 ,2 ,3 ,4 ]
Liu, Boyang [1 ,2 ,3 ,4 ]
Melvin, Dominic L. R. [1 ,2 ,3 ,4 ]
Adamson, Paul [1 ,2 ,3 ,4 ]
Marrow, James [1 ]
Bruce, Peter G. [1 ,2 ,3 ,4 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Univ Oxford, Dept Chem, Oxford OX1 3PH, England
[3] Faraday Inst, Didcot OX11 0RA, Oxon, England
[4] Henry Royce Inst, Oxford OX1 3PH, England
基金
英国工程与自然科学研究理事会;
关键词
solid-state battery; lithium anode; interfaces; temperature dependence; X-ray tomography; HIGH-ENERGY; ELECTROLYTE INTERPHASE; IONIC-CONDUCTIVITY; LI6PS5X X; METAL; CHALLENGES; GROWTH; INTERFACE; PRESSURE; PATHWAYS;
D O I
10.1021/acsami.1c06706
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Void formation at the Li/ceramic electrolyte interface of an all-solid-state battery on discharge results in high local current densities, dendrites on charge, and cell failure. Here, we show that such voiding is reduced at the Li/Li6PS5Cl interface at elevated temperatures, sufficient to increase the critical current before voiding and cell failure from <0.25 mA cm(-2) at 25 degrees C to 0.25 mA cm(-2) at 60 degrees C and 0.5 mA cm(-2) at 80 degrees C under a relatively low stack-pressure of 1 MPa. Increasing the stack-pressure to 5 MPa and temperature to 80 degrees C permits stable cycling at 2.5 mA cm(-2). It is also shown that the charge-transfer resistance at the Li/Li6PS5Cl interface depends on pressure and temperature, with relatively high pressures required to maintain low charge-transfer resistance at -20 degrees C. These results are consistent with the plastic deformation of Li metal dominating the performance of the Li anode, posing challenges for the implementation of solid-state cells with Li anodes.
引用
收藏
页码:22708 / 22716
页数:9
相关论文
共 50 条
[41]   Composite solid-state electrolytes for all solid-state lithium batteries: progress, challenges and outlook [J].
Wang, Senhao ;
La Monaca, Andrea ;
Demopoulos, George P. .
ENERGY ADVANCES, 2025, 4 (01) :11-36
[42]   Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J].
Chen, Long ;
Huang, Shaobo ;
Qiu, Jingyi ;
Zhang, Hao ;
Cao, Gaoping .
PROGRESS IN CHEMISTRY, 2021, 33 (08) :1378-1389
[43]   All Solid-State Lithium Batteries Assembled with Hybrid Solid Electrolytes [J].
Jung, Yun-Chae ;
Lee, Sang-Min ;
Choi, Jeong-Hee ;
Jang, Seung Soon ;
Kim, Dong-Won .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (04) :A704-A710
[44]   Progress in solid electrolytes toward realizing solid-state lithium batteries [J].
Takada, Kazunori .
JOURNAL OF POWER SOURCES, 2018, 394 :74-85
[45]   Oxygen doped argyrodite electrolyte for all-solid-state lithium batteries [J].
Wu, Ming ;
Liu, Gaozhan ;
Yao, Xiayin .
APPLIED PHYSICS LETTERS, 2022, 121 (20)
[46]   In Situ Modification Strategy for Development of Room-Temperature Solid-State Lithium Batteries with High Rate Capability [J].
Zhao, Jianghui ;
Xie, Maoling ;
Zhang, Haiyang ;
Yi, Ruowei ;
Hu, Chenji ;
Kang, Tuo ;
Zheng, Lei ;
Cui, Ruiguang ;
Chen, Hongwei ;
Shen, Yanbin ;
Chen, Liwei .
ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (12)
[47]   Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries [J].
Liang, Jianneng ;
Luo, Jing ;
Sun, Qian ;
Yang, Xiaofei ;
Li, Ruying ;
Sun, Xueliang .
ENERGY STORAGE MATERIALS, 2019, 21 :308-334
[48]   The ionic interphases of the lithium anode in solid state batteries [J].
Guo, Rui ;
Hobold, Gustavo M. ;
Gallant, Betar M. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2022, 26 (01)
[49]   Lithium-Ion Batteries: Nomenclature of Interphases with Liquid or Solid-State Electrolytes [J].
Kyeremateng, N. Amponsah ;
Elia, Giuseppe A. ;
Hahn, Robert ;
Slater, Peter R. .
BATTERIES & SUPERCAPS, 2023, 6 (03)
[50]   Toward safer solid-state lithium metal batteries: a review [J].
Wang, Zhenkang ;
Liu, Jie ;
Wang, Mengfan ;
Shen, Xiaowei ;
Qian, Tao ;
Yan, Chenglin .
NANOSCALE ADVANCES, 2020, 2 (05) :1828-1836