Entropy of quantum limits

被引:40
作者
Bourgain, J
Lindenstrauss, E
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
D O I
10.1007/s00220-002-0770-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we show that any measure arising as a weak* limit of microlocal lifts of eigenfunctions of the Laplacian on certain arithmetic manifolds have dimension at least 11/9, and in particular all ergodic components of this measure with respect to the geodesic flow have positive entropy.
引用
收藏
页码:153 / 171
页数:19
相关论文
共 10 条
[1]  
Burgess D.A., 1963, P LOND MATH SOC, V3, P524, DOI [DOI 10.1112/PLMS/S3-13.1.524, 10.1112/plms/s3-13.1.524]
[2]  
DEVERDIERE YC, 1985, COMMUN MATH PHYS, V102, P497
[3]  
LEDRAPPIER F, PROJECTION MEASURES
[4]  
LINDENSTRAUSS E, 2001, IN PRESS IMRN
[5]   THE BEHAVIOR OF EIGENSTATES OF ARITHMETIC HYPERBOLIC MANIFOLDS [J].
RUDNICK, Z ;
SARNAK, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 161 (01) :195-213
[6]  
SARNAK P, 2000, MATH FRONTIERS PERSP, P261
[7]  
Snirel'man AI., 1974, USPEHI MAT NAUK, V29, P181
[8]  
Tenenbaum G., 1995, Introduction to Analytic and Probabilistic Number Theory, V3
[9]   The modulus of continuity for Γ0(m)\H semi-classical limits [J].
Wolpert, SA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 216 (02) :313-323
[10]   UNIFORM-DISTRIBUTION OF EIGENFUNCTIONS ON COMPACT HYPERBOLIC SURFACES [J].
ZELDITCH, S .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (04) :919-941