Faith & falsity

被引:26
作者
Visser, A [1 ]
机构
[1] Univ Utrecht, Dept Philosophy, NL-3584 CS Utrecht, Netherlands
关键词
Rosser arguments; faithful interpretations; sequential theories; Sigma-soundness;
D O I
10.1016/j.apal.2004.04.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A theory T is trustworthy iff, whenever a theory U is interpretable in T, then it is faithfully interpretable. In this paper we give a characterization of trustworthiness. We provide a simple proof of Friedman's Theorem that finitely axiomatized, sequential, consistent theories are trustworthy. We provide an example of a theory whose schematic predicate logic is complete Pi(2)(0), (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:103 / 131
页数:29
相关论文
共 23 条
[1]  
[Anonymous], 1987, ARCH MATH LOG GRUNDL
[2]  
[Anonymous], NOTRE DAME J FORM LO
[3]  
BUSS S, 1986, BOUNDED ARITHMETIC
[4]  
GERHARDY P, 2003, LNCS, V2803
[5]  
Guaspari D., 1979, ANN MATH LOGIC, V16, P81, DOI DOI 10.1016/0003-4843(79)90017-2
[6]  
HAJER P., 1991, PERSPECTIVES MATH LO
[7]  
HANF W, 1965, THEORY MODELS
[8]  
Lindstrom P., 1997, LECT NOTES LOGIC, V10
[9]  
MACLANE S, 1971, GRADUATE TEXTS MATH, V5
[10]   CUTS, CONSISTENCY STATEMENTS AND INTERPRETATIONS [J].
PUDLAK, P .
JOURNAL OF SYMBOLIC LOGIC, 1985, 50 (02) :423-441