Pattern avoiding meandric permutations

被引:0
作者
Barnabei, Marilena [1 ]
Bonetti, Flavio [2 ]
Castronuovo, Niccolo [1 ]
Silimbani, Matteo [3 ]
机构
[1] Univ Bologna, Dipartimento Matemat, I-40126 Bologna, Italy
[2] Univ Bologna, PAM, I-40126 Bologna, Italy
[3] Ist Comprens E Rosetti, I-47034 Forlimpopoli, Italy
来源
AUSTRALASIAN JOURNAL OF COMBINATORICS | 2022年 / 83卷
关键词
PLANE; MEANDERS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study and characterize meandric permutations avoiding one or more patterns of length three, and find explicit formulae for the cardinality of each of these sets. We determine the distribution of the descent statistic for the set of meandric permutations avoiding the pattern 231. The sets of meandric permutations avoiding any other pattern of length three can be either trivially determined, or deduced from the 231 case via the symmetries of the square. In the 231 case we provide a bijection with a set of Motzkin paths that maps the statistic "number of descents of a permutation" to the statistic "number of non-horizontal steps of a path".
引用
收藏
页码:418 / 434
页数:17
相关论文
共 27 条
[21]  
Poincare H., 1912, Rend. Circ. Mat. Palermo, V33, P375
[22]   Meander Knots and Links [J].
Radovic, Ljiljana ;
Jablan, Slavik .
FILOMAT, 2015, 29 (10) :2381-2392
[23]  
Simion R., 1985, European J. Combin., V6, P383
[24]  
Sloane N.J.A., The on-line encyclopedia of integer sequences, DOI DOI 10.1371/journal.pone.0096223
[25]  
Stanley RP., 2001, Enumerative combinatorics, V2
[26]   Parity Alternating Permutations and Signed Eulerian Numbers [J].
Tanimoto, Shinji .
ANNALS OF COMBINATORICS, 2010, 14 (03) :355-366
[27]   Combinatorics of the group of parity alternating permutations [J].
Tanimoto, Shinji .
ADVANCES IN APPLIED MATHEMATICS, 2010, 44 (03) :225-230