An Introduction to Spectral Theory in Fuzzy Normed Linear Spaces

被引:1
作者
Oprea, Ramona Ioana [1 ]
Flavius, Pater [2 ]
Juratoni, Adina [2 ]
Bundau, Olivia [2 ]
机构
[1] Ovidius Univ Constanta, Mamaia Bvd 124,Univ Entrance 1, Constanta 900527, Romania
[2] Politehn Univ Timisoara, Dept Math, Pta Regina Maria 1, Timisoara 300004, Romania
来源
INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019 | 2020年 / 2293卷
关键词
D O I
10.1063/5.0026609
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper deals with few spectral properties for elements from a fuzzy normed algebra. It is introduced the definition of the spectral radius of an element from the fuzzy normed linear space (X, N, Lambda) and some basic properties of it are shown. More precisely, we will prove that almost all the properties of this spectrum from some particular case of locally convex spaces are also true for this setup.
引用
收藏
页数:4
相关论文
共 12 条
[1]   Characterizations of metrizable topological vector spaces and their asymmetric generalizations in terms of fuzzy (quasi-)norms [J].
Alegre, Carmen ;
Romaguera, Salvador .
FUZZY SETS AND SYSTEMS, 2010, 161 (16) :2181-2192
[2]  
ALLAN GR, 1965, P LOND MATH SOC, V15, P399
[3]  
Bag T., 2003, The Journal of Fuzzy Mathematics, V11, P687
[4]   On fuzzy normed algebras [J].
Binzar, Tudor ;
Pater, Flavius ;
Nadaban, Sorin .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (09) :5488-5496
[5]   Extending the formula to calculate the spectral radius of an operator [J].
Bonales, FG ;
Mendoza, RV .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (01) :97-103
[6]  
Cheng S.C., 1994, B CALCUTTA MATH SOC, V86, P429
[7]   FINITE DIMENSIONAL FUZZY NORMED LINEAR-SPACE [J].
FELBIN, C .
FUZZY SETS AND SYSTEMS, 1992, 48 (02) :239-248
[8]  
JOSEPH GA, 1977, J AUSTRAL MATH SOC A, V24, P50
[9]   FUZZY TOPOLOGICAL VECTOR-SPACES .2. [J].
KATSARAS, AK .
FUZZY SETS AND SYSTEMS, 1984, 12 (02) :143-154
[10]  
Michael A, MEM AM MATH SOC, V11