On the fractional-order logistic equation

被引:222
|
作者
El-Sayed, A. M. A.
El-Mesiry, A. E. M.
El-Saka, H. A. A. [1 ]
机构
[1] Mansoura Univ, Damietta Fac Sci, Dept Math, New Damietta 34517, Egypt
[2] Univ Alexandria, Fac Sci, Alexandria, Egypt
关键词
logistic equation; fractional-order differential equations; stability; existence; uniqueness; numerical solution; predictor-corrector method;
D O I
10.1016/j.aml.2006.08.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The topic of fractional calculus (derivatives and integrals of arbitrary orders) is enjoying growing interest not only among mathematicians, but also among physicists and engineers (see [E.M. El-Mesiry, A.M.A. El-Sayed, H.A.A. El-Saka, Numerical methods for multi-term fractional (arbitrary) orders differential equations, Appl. Math. Comput. 160 (3) (2005) 683-699; A.M.A. El-Sayed, Fractional differential-difference equations, J. Fract. Calc. 10 (1996) 101-106; A.M.A. El-Sayed, Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal. 33 (2) (1998) 181-186; A.M.A. El-Sayed, F.M. Gaafar, Fractional order differential equations with memory and fractional-order relaxation-oscillation model, (PU.M.A) Pure Math. Appl. 12 (2001); A.M.A. El-Sayed, E.M. El-Mesiry, H.A.A. El-Saka, Numerical solution for multi-term fractional (arbitrary) orders differential equations, Comput. Appl. Math. 23 (1) (2004) 33-54; A.M.A. El-Sayed, F.M. Gaafar, H.H. Hashem, On the maximal and minimal solutions of arbitrary orders nonlinear functional integral and differential equations, Math. Sci. Res. J. 8 (11) (2004) 336-348; R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien, 1997, pp. 223-276; D. Matignon, Stability results for fractional differential equations with applications to control processing, in: Computational Engineering in System Application, vol. 2, Lille, France, 1996, p. 963; I. Podlubny, A.M.A. El-Sayed, On Two Definitions of Fractional Calculus, Solvak Academy of science-institute of experimental phys, ISBN: 80-7099-252-2, 1996. UEF-03-96; I. Podlubny, Fractional Differential Equations, Academic Press, 1999] for example). In this work we are concerned with the fractional-order logistic equation. We study here the stability, existence, uniqueness and numerical solution of the fractional-order logistic equation. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:817 / 823
页数:7
相关论文
共 50 条
  • [21] HEAT CONDUCTION EQUATION IN FRACTIONAL-ORDER DERIVATIVES
    Alkhasov, A. B.
    Meilanov, R. P.
    Shabanova, M. R.
    JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2011, 84 (02) : 332 - 341
  • [22] A mechanical picture of fractional-order Darcy equation
    Deseri, Luca
    Zingales, Massimiliano
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (03) : 940 - 949
  • [23] Bifurcation and chaos of a new discrete fractional-order logistic map
    Ji, YuanDong
    Lai, Li
    Zhong, SuChuan
    Zhang, Lu
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 57 : 352 - 358
  • [24] Fractional-order Legendre operational matrix of fractional integration for solving the Riccati equation with fractional order
    Kashkari, Bothayna S. H.
    Syam, Muhammed I.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 290 : 281 - 291
  • [25] On a boundary value problem for a fractional-order differential equation
    Aleroev, TS
    DIFFERENTIAL EQUATIONS, 1998, 34 (01) : 126 - 126
  • [26] New Explicit Solutions to the Fractional-Order Burgers' Equation
    Uddin, M. Hafiz
    Arefin, Mohammad Asif
    Akbar, M. Ali
    Inc, Mustafa
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [27] A FRACTIONAL-ORDER ALTERNATIVE FOR PHASE-LAGGING EQUATION
    Ji, Cui-Cui
    Dai, Weizhong
    Mickens, Ronald E.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2023, 20 (03) : 391 - 406
  • [28] On the Existence and Uniqueness of Solution to Fractional-Order Langevin Equation
    Salem, Ahmed
    Mshary, Noorah
    ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [29] Continuation and maximal regularity of fractional-order evolution equation
    El-Sayed, AMA
    Herzallah, MAE
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 296 (01) : 340 - 350
  • [30] On a fractional-order delay Mackey-Glass equation
    El-Sayed, Ahmedma M. A.
    Salman, Sanaa M.
    Elabd, Naemaa A.
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,