On the fractional-order logistic equation

被引:222
|
作者
El-Sayed, A. M. A.
El-Mesiry, A. E. M.
El-Saka, H. A. A. [1 ]
机构
[1] Mansoura Univ, Damietta Fac Sci, Dept Math, New Damietta 34517, Egypt
[2] Univ Alexandria, Fac Sci, Alexandria, Egypt
关键词
logistic equation; fractional-order differential equations; stability; existence; uniqueness; numerical solution; predictor-corrector method;
D O I
10.1016/j.aml.2006.08.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The topic of fractional calculus (derivatives and integrals of arbitrary orders) is enjoying growing interest not only among mathematicians, but also among physicists and engineers (see [E.M. El-Mesiry, A.M.A. El-Sayed, H.A.A. El-Saka, Numerical methods for multi-term fractional (arbitrary) orders differential equations, Appl. Math. Comput. 160 (3) (2005) 683-699; A.M.A. El-Sayed, Fractional differential-difference equations, J. Fract. Calc. 10 (1996) 101-106; A.M.A. El-Sayed, Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal. 33 (2) (1998) 181-186; A.M.A. El-Sayed, F.M. Gaafar, Fractional order differential equations with memory and fractional-order relaxation-oscillation model, (PU.M.A) Pure Math. Appl. 12 (2001); A.M.A. El-Sayed, E.M. El-Mesiry, H.A.A. El-Saka, Numerical solution for multi-term fractional (arbitrary) orders differential equations, Comput. Appl. Math. 23 (1) (2004) 33-54; A.M.A. El-Sayed, F.M. Gaafar, H.H. Hashem, On the maximal and minimal solutions of arbitrary orders nonlinear functional integral and differential equations, Math. Sci. Res. J. 8 (11) (2004) 336-348; R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien, 1997, pp. 223-276; D. Matignon, Stability results for fractional differential equations with applications to control processing, in: Computational Engineering in System Application, vol. 2, Lille, France, 1996, p. 963; I. Podlubny, A.M.A. El-Sayed, On Two Definitions of Fractional Calculus, Solvak Academy of science-institute of experimental phys, ISBN: 80-7099-252-2, 1996. UEF-03-96; I. Podlubny, Fractional Differential Equations, Academic Press, 1999] for example). In this work we are concerned with the fractional-order logistic equation. We study here the stability, existence, uniqueness and numerical solution of the fractional-order logistic equation. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:817 / 823
页数:7
相关论文
共 50 条
  • [1] A Fractional Spline Collocation Method for the Fractional-order Logistic Equation
    Pitolli, Francesca
    Pezza, Laura
    APPROXIMATION THEORY XV, 2017, 201 : 307 - 318
  • [2] On the Fractional-Order Logistic Equation with Two Different Delays
    El-Sayed, Ahmed M. A.
    El-Saka, Hala A. A.
    El-Maghrabi, Esam M.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (3-4): : 223 - 227
  • [3] Dynamic Properties of the Fractional-Order Logistic Equation of Complex Variables
    El-Sayed, A. M. A.
    Ahmed, E.
    El-Saka, H. A. A.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [4] Stability Analysis of Fractional-order Differential Equation with Time Delay and Applications in Fractional Logistic Equation
    Zhang, Hongwei
    Jin, Niu
    Hu, Qingying
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 879 - 881
  • [5] Dynamic analysis of the fractional-order logistic equation with two different delays
    El-Saka, H. A. A.
    El-Sherbeny, D. El. A.
    El-Sayed, A. M. A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (06):
  • [6] Solving Fractional-Order Logistic Equation Using a New Iterative Method
    Bhalekar, Sachin
    Daftardar-Gejji, Varsha
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 2012
  • [7] Fractional-Order Logistic Differential Equation with Mittag-Leffler-Type Kernel
    Area, Ivan
    Nieto, Juan J.
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [8] Numerical Studies for Fractional-Order Logistic Differential Equation with Two Different Delays
    Sweilam, N. H.
    Khader, M. M.
    Mahdy, A. M. S.
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [9] Coupled Discrete Fractional-Order Logistic Maps
    Danca, Marius-F
    Feckan, Michal
    Kuznetsov, Nikolay
    Chen, Guanrong
    MATHEMATICS, 2021, 9 (18)
  • [10] Perturbation for fractional-order evolution equation
    Mohamed A. E. Herzallah
    Ahmed M. A. El-Sayed
    Dumitru Baleanu
    Nonlinear Dynamics, 2010, 62 : 593 - 600