Effect of graphene nano-platelet reinforcement on the mechanical properties of hot pressed boron carbide based composite

被引:48
作者
Alexander, Rajath [1 ,2 ]
Murthy, T. S. R. Ch. [1 ]
Ravikanth, K. V. [1 ]
Prakash, Jyoti [1 ]
Mahata, Tarasankar [1 ]
Bakshi, Srinivasa Rao [2 ]
Krishnan, Madangopal [1 ]
Dasgupta, Kinshuk [1 ]
机构
[1] Bhabha Atom Res Ctr, Mat Grp, Bombay, Maharashtra, India
[2] IIT Madras, Dept Met & Mat Engn, Madras, Tamil Nadu, India
关键词
Boron carbide; Graphene nano platelet; Hot pressing; Fracture toughness; XRD; Raman spectroscopy; FRACTURE-TOUGHNESS; CERAMIC COMPOSITES; RAMAN-SPECTROSCOPY; B4C-CRB2; CERAMICS; CARBON NANOTUBES; MICROSTRUCTURE; ARMOR; CONDUCTIVITY; HARDNESS; ALUMINA;
D O I
10.1016/j.ceramint.2018.02.225
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Boron carbide (B4C) based composites with graphene nano-platelet (GNP) as reinforcement have been prepared by hot pressing. Effect of GNP addition on mechanical properties of the composite, like, hardness, fracture toughness, flexural strength was evaluated. Phase evolution was studied by X-ray diffraction (XRD) and Raman spectroscopy. 2 vol% addition of GNP improved the density of the composite, which acted as a sintering aid. Further addition of GNP resulted in formation of the interconnected networks, agglomerates and interfacial porosities. Improved fracture toughness (KO but decreased flexural strength was observed with addition of GNP. Maximum fracture toughness of 5.41 +/- 0.55 MPa m(1/2) (by indentation method) and 4.52 +/- 0.15 MPa m(1/2) (by single edge notch bend (SENB) method) was obtained for 10 vol% GNP-B4C composite. Hardness and elastic modulus were also improved with 2 vol% addition of GNP. The observations have been explained with suitable mechanism and model, supported by microstructural and mechanical property data.
引用
收藏
页码:9830 / 9838
页数:9
相关论文
共 48 条
[1]   Exfoliation of graphene sheets via high energy wet milling of graphite in 2-ethylhexanol and kerosene [J].
Al-Sherbini, Al-Sayed ;
Bakr, Mona ;
Ghoneim, Iman ;
Saad, Mohamed .
JOURNAL OF ADVANCED RESEARCH, 2017, 8 (03) :209-215
[2]   A CRITICAL-EVALUATION OF INDENTATION TECHNIQUES FOR MEASURING FRACTURE-TOUGHNESS .1. DIRECT CRACK MEASUREMENTS [J].
ANSTIS, GR ;
CHANTIKUL, P ;
LAWN, BR ;
MARSHALL, DB .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1981, 64 (09) :533-538
[3]   Bioinspired design and assembly of platelet reinforced polymer films [J].
Bonderer, Lorenz J. ;
Studart, Andre R. ;
Gauckler, Ludwig J. .
SCIENCE, 2008, 319 (5866) :1069-1073
[4]   Microstructure and fracture toughness of graphene nanosheets/alumina composites [J].
Chen, Ya-Fei ;
Bi, Jian-Qiang ;
Yin, Chong-Long ;
You, Guang-Lei .
CERAMICS INTERNATIONAL, 2014, 40 (09) :13883-13889
[5]   Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy [J].
Dresselhaus, Mildred S. ;
Jorio, Ado ;
Hofmann, Mario ;
Dresselhaus, Gene ;
Saito, Riichiro .
NANO LETTERS, 2010, 10 (03) :751-758
[6]   Microstructure and fracture toughness of Si3N4 + graphene platelet composites [J].
Dusza, Jan ;
Morgiel, Jerzy ;
Duszova, Annamaria ;
Kvetkova, Lenka ;
Nosko, Martin ;
Kun, Peter ;
Balazsi, Csaba .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2012, 32 (12) :3389-3397
[7]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[8]  
Griffith AA. VI, 1921, Philos. Trans. R. Soc. London, V221, P163, DOI 10.1098/rsta.1921.0006
[9]   THE ELASTIC-MODULUS AND FRACTURE OF BORON-CARBIDE [J].
HOLLENBERG, GW ;
WALTHER, G .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1980, 63 (11-1) :610-613
[10]  
Karandikar PG, 2009, CERAM ENG SCI PROC, V29, P163