Photonic reservoir computer using speckle in multimode waveguide ring resonators

被引:9
作者
Ashner, Matthew N. [1 ]
Paudel, Uttam [1 ]
Luengo-Kovac, Marta [1 ]
Pilawa, Jacob [1 ]
Valley, George C. [1 ]
机构
[1] Aerosp Corp, Elect & Photon Lab, 2310 E El Segundo Blvd, El Segundo, CA 90245 USA
关键词
IMPLEMENTATION;
D O I
10.1364/OE.425062
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photonic reservoir computers (RC) come in single mode ring and multimode array geometries. We propose and simulate a photonic RC architecture using speckle in a multimode waveguide ring resonator that requires neither the ultra-high-speed analog-digital conversion nor the spatial light modulator used in other designs. We show that the equations for propagation around a multimode (MM) ring resonator along with an optical nonlinearity, and optical feedback can be cast exactly in the standard RC form with speckle mixing performing the pseudo-random matrix multiplications. The hyperparameters are the outcoupling efficiency, the nonlinearity saturation intensity, the input bias, and the waveguide properties. In particular, the number of waveguide modes is a measure of the number of effective neurons in the RC. Simulations show a ring using a strongly guiding 50-mu m planar waveguide gives 206 effective neurons and excellent predictions of Mackey-Glass waveforms for a broad range of the hyperparameters, while a weakly guiding MM 200-mu m diameter fiber gives 4,238 effective neurons and excellent predictions of chaotic solutions of the Kuramoto-Sivashinsky equation. We discuss physical realizations for implementing the system with a chip-scale device or with discrete components and a MM optical fiber. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:19262 / 19277
页数:16
相关论文
共 45 条
[1]   Evanescent Coupling Device Design for Waveguide-Integrated Group IV Photodetectors [J].
Ahn, Donghwan ;
Kimerling, Lionel C. ;
Michel, Jurgen .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2010, 28 (23) :3387-3394
[2]  
[Anonymous], 2001, 148 GMD GERM NAT RES
[3]   Large-Scale Spatiotemporal Photonic Reservoir Computer for Image Classification [J].
Antonik, Piotr ;
Marsal, Nicolas ;
Rontani, Damien .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (01)
[4]   Photonic machine learning implementation for signal recovery in optical communications [J].
Argyris, Apostolos ;
Bueno, Julian ;
Fischer, Ingo .
SCIENTIFIC REPORTS, 2018, 8
[5]  
Borlaug D. B., 2020, PHOTONIC INTEGRATED
[6]   Recent Advances in Silicon Photonic Integrated Circuits [J].
Bowers, John E. ;
Komljenovic, Tin ;
Davenport, Michael ;
Hulme, Jared ;
Liu, Alan Y. ;
Santis, Christos T. ;
Spott, Alexander ;
Srinivasan, Sudharsanan ;
Stanton, Eric J. ;
Zhang, Chong .
NEXT-GENERATION OPTICAL COMMUNICATION: COMPONENTS, SUB-SYSTEMS, AND SYSTEMS V, 2016, 9774
[7]   Parallel photonic information processing at gigabyte per second data rates using transient states [J].
Brunner, Daniel ;
Soriano, Miguel C. ;
Mirasso, Claudio R. ;
Fischer, Ingo .
NATURE COMMUNICATIONS, 2013, 4
[8]   Reinforcement learning in a large-scale photonic recurrent neural network [J].
Bueno, J. ;
Maktoobi, S. ;
Froehly, L. ;
Fischer, I. ;
Jacquot, M. ;
Larger, L. ;
Brunner, D. .
OPTICA, 2018, 5 (06) :756-760
[9]   A Four-Channel Silicon Photonic Carrier With Flip-Chip Integrated Semiconductor Optical Amplifier (SOA) Array Providing >10-dB Gain [J].
Doany, Fuad E. ;
Budd, Russell A. ;
Schares, Laurent ;
Huynh, Tarn N. ;
Wood, Michael G. ;
Kuchta, Daniel M. ;
Dupuis, Nicolas ;
Schow, Clint L. ;
Lee, Benjamin G. ;
Module, M. ;
Sigmund, A. ;
Rehbein, W. ;
Liow, T. Y. ;
Luo, L. W. ;
Lo, G. Q. .
2016 IEEE 66TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC), 2016, :1061-1068
[10]   Optical Reservoir Computing Using Multiple Light Scattering for Chaotic Systems Prediction [J].
Dong, Jonathan ;
Rafayelyan, Mushegh ;
Krzakala, Florent ;
Gigan, Sylvain .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (01) :1-12