Stability of Neel skyrmions in ultra-thin nanodots considering Dzyaloshinskii-Moriya and dipolar interactions

被引:31
作者
Vidal-Silva, Nicolas [1 ]
Riveros, Alejandro [1 ]
Escrig, Juan [1 ,2 ]
机构
[1] Univ Santiago Chile USACH, Dept Fis, Ave Ecuador 3493, Santiago 9170124, Chile
[2] Ctr Dev Nanosci & Nanotechnol CEDENNA, Santiago 9170124, Chile
关键词
MAGNETIC SKYRMIONS; LATTICE; DYNAMICS; DRIVEN;
D O I
10.1016/j.jmmm.2017.07.049
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An analytical expression for the energy of Neel skyrmions in ultra-thin nanodots considering exchange, uniaxial anisotropy, Dzyaloshinskii-Moriya, and dipolar contributions has been obtained. In particular, we have proposed for the Neel skyrmion, a general ansatz for the component of the magnetization perpendicular to the dot, given by m(z)(r) = [1 - (r/R-s)(n)]/[1 + (r/R-s)(n)], where R-s is the radius of the skyrmion and n is an integer and even number. As proof of concept, we calculate the energy of a Neel skyrmion in an ultra-thin Co/Pt dot, and we find that the dipolar contribution cannot be neglected and that both Dzyaloshinskii-Moriya interaction and anisotropy play an important role to stabilize the skyrmion. Additionally, we have obtained a good agreement between our analytical calculations and previously published micromagnetic simulations for n = 10. For this reliable value of n, we have obtained that for a Dzyaloshinski Moriya constant D = 5.5 (mJ/m(2)), it is possible to stabilize a Neel skyrmion for K-u in the range 0.4 (MJ/m(3)) < K-u < 1.3 (MJ/m(3)), whereas for K-u = 0.8 (MJ/m(3)), the skyrmion stabilizes for 5.0 (mJ/m(2)) < D < 6.0 (mJ/m(2)) . Thus, this analytical equation can be widely used to predict stability ranges for the Neel skyrmion in spintronic devices. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:116 / 123
页数:8
相关论文
共 31 条
[1]  
Aharoni A., 1996, Introduction to the Theory of Ferromagnetism
[2]  
Andrews GE., 1999, SPECIAL FUNCTIONS EN
[3]   Ground state search, hysteretic behaviour, and reversal mechanism of skyrmionic textures in confined helimagnetic nanostructures [J].
Beg, Marijan ;
Carey, Rebecca ;
Wang, Weiwei ;
Cortes-Ortuno, David ;
Vousden, Mark ;
Bisotti, Marc-Antonio ;
Albert, Maximilian ;
Chernyshenko, Dmitri ;
Hovorka, Ondrej ;
Stamps, Robert L. ;
Fangohr, Hans .
SCIENTIFIC REPORTS, 2015, 5
[4]  
BELAVIN AA, 1975, JETP LETT+, V22, P245
[5]   Chiral magnetic order at surfaces driven by inversion asymmetry [J].
Bode, M. ;
Heide, M. ;
von Bergmann, K. ;
Ferriani, P. ;
Heinze, S. ;
Bihlmayer, G. ;
Kubetzka, A. ;
Pietzsch, O. ;
Bluegel, S. ;
Wiesendanger, R. .
NATURE, 2007, 447 (7141) :190-193
[6]   Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures [J].
Boulle, Olivier ;
Vogel, Jan ;
Yang, Hongxin ;
Pizzini, Stefania ;
Chaves, Dayane de Souza ;
Locatelli, Andrea ;
Mentes, Tevfik Onur ;
Sala, Alessandro ;
Buda-Prejbeanu, Liliana D. ;
Klein, Olivier ;
Belmeguenai, Mohamed ;
Roussigne, Yves ;
Stashkevich, Andrey ;
Cherif, Salim Mourad ;
Aballe, Lucia ;
Foerster, Michael ;
Chshiev, Mairbek ;
Auffret, Stephane ;
Miron, Ioan Mihai ;
Gaudin, Gilles .
NATURE NANOTECHNOLOGY, 2016, 11 (05) :449-+
[7]   Skyrmion core size dependence as a function of the perpendicular anisotropy and radius in magnetic nanodots [J].
Castro, M. A. ;
Allende, S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 417 :344-348
[8]   Dzyaloshinsky-Moriya interactions induced by symmetry breaking at a surface [J].
Crepieux, A ;
Lacroix, C .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1998, 182 (03) :341-349
[9]   Skyrmion ground state and gyration of skyrmions in magnetic nanodisks without the Dzyaloshinsky-Moriya interaction [J].
Dai, Y. Y. ;
Wang, H. ;
Tao, P. ;
Yang, T. ;
Ren, W. J. ;
Zhang, Z. D. .
PHYSICAL REVIEW B, 2013, 88 (05)
[10]   A THERMODYNAMIC THEORY OF WEAK FERROMAGNETISM OF ANTIFERROMAGNETICS [J].
DZYALOSHINSKY, I .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1958, 4 (04) :241-255