Solid-State Lithium Battery Cycle Life Prediction Using Machine Learning

被引:24
作者
Cheng, Danpeng [1 ]
Sha, Wuxin [1 ]
Wang, Linna [2 ]
Tang, Shun [1 ]
Ma, Aijun [3 ]
Chen, Yongwei [3 ]
Wang, Huawei [3 ]
Lou, Ping [4 ]
Lu, Songfeng [5 ]
Cao, Yuan-Cheng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, Key Lab Adv Electromagnet Engn & Technol, Wuhan 430074, Peoples R China
[2] China Natl Intellectual Property Adm, Patent Examinat Cooperat Beijing Ctr, Patent Off, Beijing 100000, Peoples R China
[3] Zhejiang Tailun Power Grp Co Ltd, Huzhou 313000, Peoples R China
[4] State Grid Huzhou Elect Power Supply Co, Huzhou 313000, Peoples R China
[5] Huazhong Univ Sci & Technol, Sch Cyber Sci & Engn, Wuhan 430074, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 10期
基金
中国国家自然科学基金;
关键词
machine learning; remaining useful life; symbolic regression; ION BATTERIES; CAPACITY FADE; HEALTH; DISCOVERY;
D O I
10.3390/app11104671
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Battery lifetime prediction is a promising direction for the development of next-generation smart energy storage systems. However, complicated degradation mechanisms, different assembly processes, and various operation conditions of the batteries bring tremendous challenges to battery life prediction. In this work, charge/discharge data of 12 solid-state lithium polymer batteries were collected with cycle lives ranging from 71 to 213 cycles. The remaining useful life of these batteries was predicted by using a machine learning algorithm, called symbolic regression. After populations of breed, mutation, and evolution training, the test accuracy of the quantitative prediction of cycle life reached 87.9%. This study shows the great prospect of a data-driven machine learning algorithm in the prediction of solid-state battery lifetimes, and it provides a new approach for the batch classification, echelon utilization, and recycling of batteries.
引用
收藏
页数:13
相关论文
共 42 条
[1]   Closed-loop optimization of fast-charging protocols for batteries with machine learning [J].
Attia, Peter M. ;
Grover, Aditya ;
Jin, Norman ;
Severson, Kristen A. ;
Markov, Todor M. ;
Liao, Yang-Hung ;
Chen, Michael H. ;
Cheong, Bryan ;
Perkins, Nicholas ;
Yang, Zi ;
Herring, Patrick K. ;
Aykol, Muratahan ;
Harris, Stephen J. ;
Braatz, Richard D. ;
Ermon, Stefano ;
Chueh, William C. .
NATURE, 2020, 578 (7795) :397-+
[2]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[3]   State of Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Machine Learning Algorithms [J].
Chandran, Venkatesan ;
Patil, Chandrashekhar K. ;
Karthick, Alagar ;
Ganeshaperumal, Dharmaraj ;
Rahim, Robbi ;
Ghosh, Aritra .
WORLD ELECTRIC VEHICLE JOURNAL, 2021, 12 (01)
[4]   Cyclable lithium and capacity loss in Li-ion cells [J].
Christensen, J ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (04) :A818-A829
[5]   A mathematical model for the lithium-ion negative electrode solid electrolyte interphase [J].
Christensen, J ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (11) :A1977-A1988
[6]   A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain [J].
Dai, Houde ;
Zhao, Guangcai ;
Lin, Mingqiang ;
Wu, Ji ;
Zheng, Gengfeng .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (10) :7706-7716
[7]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[8]   Controlling an organic synthesis robot with machine learning to search for new reactivity [J].
Granda, Jaroslaw M. ;
Donina, Liva ;
Dragone, Vincenza ;
Long, De-Liang ;
Cronin, Leroy .
NATURE, 2018, 559 (7714) :377-+
[9]   Failure statistics for commercial lithium ion batteries: A study of 24 pouch cells [J].
Harris, Stephen J. ;
Harris, David J. ;
Li, Chen .
JOURNAL OF POWER SOURCES, 2017, 342 :589-597
[10]  
Janek J, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.141, 10.1038/NENERGY.2016.141]