Intercalated polyaniline in V2O5 as a unique vanadium oxide bronze cathode for highly stable aqueous zinc ion battery

被引:219
作者
Li, Rui [1 ,2 ]
Xing, Fei [1 ,2 ]
Li, Tianyu [1 ]
Zhang, Huamin [1 ]
Yan, Jingwang [1 ]
Zheng, Qiong [1 ]
Li, Xianfeng [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Div Energy Storage, Zhongshan Rd 457, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
基金
中国国家自然科学基金;
关键词
Zinc ion batteries; Vanadium oxide bronze; Hybrid material; Polyaniline; PERFORMANCE; VANADATE; TEMPERATURE; MECHANISM; INSERTION; CAPACITY; STORAGE;
D O I
10.1016/j.ensm.2021.04.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Layered vanadium oxides have been promising cathodes for rechargeable aqueous zinc ion batteries (AZIBs) owing to multiple valences of vanadium and relatively high interplanar spacing. However, it undergoes significant capacity decay due to vanadium dissolution and structural instability during cycling, especially at low current densities. Herein, PANI-intercalated V2O5 ((PANI)(x)V2O5, PAVO) hybrid bronzes with an ultra-high interlayer spacing of 13.9 ? for use as an AZIB cathode have been reported. The inserted polyaniline not only acts as structural pillars because of the hydrogen bond between -NH2 group and V-O layer but also plays the role of 'H+' reservoir to prevent V-O matrix from H+ attacking. Accordingly, PAVO cathode delivers a specific capacity of 350 mAh g(-1) with a capacity of similar to 90% over 100 cycles at a current density of 0.1 A g(-1), which operates for about 1 month. This study unveils the dissolution mechanism of vanadium-based electrodes and improves the stability and electronic conductivity with organic molecule intercalation. Besides, the intercalation of guest molecule generates pros and cons (favorable higher interlayer, while adverse steric hindrance) to the Zn2+ diffusion and accordingly presents a different rate performance when compared to most of the previously reported work. Therefore, a new set of molecular-scale hybrid bronzes would be designed to achieve an optimized performance in the future.
引用
收藏
页码:590 / 598
页数:9
相关论文
共 66 条
[1]   Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode [J].
Alfaruqi, Muhammad H. ;
Mathew, Vinod ;
Song, Jinju ;
Kim, Sungjin ;
Islam, Saiful ;
Pham, Duong Tung ;
Jo, Jeonggeun ;
Kim, Seokhun ;
Baboo, Joseph Paul ;
Xiu, Zhiliang ;
Lee, Kug-Seung ;
Sun, Yang-Kook ;
Kim, Jaekook .
CHEMISTRY OF MATERIALS, 2017, 29 (04) :1684-1694
[2]   Engineering a High-Energy-Density and Long Lifespan Aqueous Zinc Battery via Ammonium Vanadium Bronze [J].
Bin, Duan ;
Liu, Yao ;
Yang, Beibei ;
Huang, Jianhang ;
Dong, Xiaoli ;
Zhang, Xiao ;
Wang, Yonggang ;
Xia, Yongyao .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (23) :20796-20803
[3]   Scientific Challenges for the Implementation of Zn-Ion Batteries [J].
Blanc, Lauren E. ;
Kundu, Dipan ;
Nazar, Linda F. .
JOULE, 2020, 4 (04) :771-799
[4]   Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode [J].
Cai, Yangsheng ;
Liu, Fei ;
Luo, Zhigao ;
Fang, Guozhao ;
Zhou, Jiang ;
Pan, Anqiang ;
Liang, Shuquan .
ENERGY STORAGE MATERIALS, 2018, 13 :168-174
[5]  
Calvert C., 1991, CHEM MATER, V109, P22685
[6]   Persistent zinc-ion storage in mass-produced V2O5 architecture [J].
Chen, Dong ;
Rui, Xianhong ;
Zhang, Qi ;
Geng, Hongbo ;
Gan, Liyong ;
Zhang, Wei ;
Li, Chengchao ;
Huang, Shaoming ;
Yu, Yan .
NANO ENERGY, 2019, 60 :171-178
[7]   Regulation of Lamellar Structure of Vanadium Oxide via Polyaniline Intercalation for High-Performance Aqueous Zinc-Ion Battery [J].
Chen, Song ;
Li, Kang ;
Hui, Kwan San ;
Zhang, Jintao .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (43)
[8]  
Gomez-Romero P, 2001, ADV MATER, V13, P163, DOI 10.1002/1521-4095(200102)13:3<163::AID-ADMA163>3.0.CO
[9]  
2-U
[10]   Mechanistic Insights of Zn2+ Storage in Sodium Vanadates [J].
Guo, Xun ;
Fang, Guozhao ;
Zhang, Wenyu ;
Zhou, Jiang ;
Shan, Lutong ;
Wang, Liangbing ;
Wang, Chao ;
Lin, Tianquan ;
Tang, Yan ;
Liang, Shuquan .
ADVANCED ENERGY MATERIALS, 2018, 8 (27)