Dirichlet problems on varying domains

被引:71
作者
Daners, D [1 ]
机构
[1] Univ Sydney, Sch Math & Stat F07, Sydney, NSW 2006, Australia
关键词
boundary value problems for second-order elliptic equations; domain convergence; singular perturbation of domain;
D O I
10.1016/S0022-0396(02)00105-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the paper is to characterise sequences of domains for which solutions to an elliptic equation with Dirichlet boundary conditions converge to a solution of the corresponding problem on a limit domain. Necessary and sufficient conditions are discussed for strong and uniform convergence for the corresponding resolvent operators. Examples are given to illustrate that most results are optimal. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:591 / 624
页数:34
相关论文
共 49 条
[1]  
Adams D. R., 1996, Function Spaces and Potential Theory
[2]  
Adams R., 1975, Pure and Applied Mathematics, V65, pxviii+268
[3]  
[Anonymous], EXPOSITION MATH
[4]  
[Anonymous], ABH MATH SEM U HEMBU
[5]  
[Anonymous], JAHRESBER DTSCH MATH
[6]  
[Anonymous], APPL MATH
[7]  
Anselone P. M., 1971, Collectively compact operator approximation theory and applications to integral equations
[8]  
Arendt W, 1995, OPER THEOR, V78, P9
[9]  
Aronson DG., 1968, Ann. Scuola Norm. Sup. Pisa, V3, P607
[10]  
ARRIETA JM, 1997, RESENHAS IME USP, V3, P107