Assessing the rate of aging to monitor aging itself

被引:26
作者
Xia, Xian [1 ,2 ]
Wang, Yiyang [1 ,3 ,4 ]
Yu, Zhengqing [1 ]
Chen, Jiawei [1 ]
Han, Jing-Dong J. [1 ,3 ]
机构
[1] Peking Univ, Ctr Quantitat Biol CQB, Acad Adv Interdisciplinary Studies, Peking Tsinghua Ctr Life Sci, Beijing 100871, Peoples R China
[2] Nanjing Univ Chinese Med, Dept Pharmacol, Nanjing 210023, Jiangsu, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Biol Sci, Collaborat Innovat Ctr Genet & Dev Biol, Chinese Acad Sci Ctr Excellence Mol Cell Sci,Shan, 320 Yue Yang Rd, Shanghai 200031, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Aging rate; Machine learning; Artificial intelligence; Omics data; Bioimages; DNA METHYLATION AGE; ALL-CAUSE MORTALITY; EPIGENETIC AGE; BIOLOGICAL AGE; PREDICTING AGE; LIFE-SPAN; BLOOD; CANCER; ACCELERATION; BIOMARKER;
D O I
10.1016/j.arr.2021.101350
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Healthy aging is the prime goal of aging research and interventions. Healthy aging or not can be quantified by biological aging rates estimated by aging clocks. Generation and accumulation of large scale high-dimensional biological data together with maturation of artificial intelligence among other machine learning techniques, have enabled and spurred the rapid development of various aging rate estimators (aging clocks). Here we review the data sources and compare the algorithms of recent human aging clocks, and the applications of these clocks in both researches and daily life. We envision that not only more and multiscale data on cross-sectional data will add momentum to the aging clock development, new longitudinal and interventional data will further raise the aging clock development to the next level to be trained by true biological age such as morbidity and mortality age.
引用
收藏
页数:9
相关论文
共 78 条
[1]   Personal aging markers and ageotypes revealed by deep longitudinal profiling [J].
Ahadi, Sara ;
Zhou, Wenyu ;
Schussler-Fiorenza Rose, Sophia Miryam ;
Sailani, M. Reza ;
Contrepois, Kevin ;
Avina, Monika ;
Ashland, Melanie ;
Brunet, Anne ;
Snyder, Michael .
NATURE MEDICINE, 2020, 26 (01) :83-+
[2]   A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring [J].
Alpert, Ayelet ;
Pickman, Yishai ;
Leipold, Michael ;
Rosenberg-Hasson, Yael ;
Ji, Xuhuai ;
Gaujoux, Renaud ;
Rabani, Hadas ;
Starosvetsky, Elina ;
Kveler, Ksenya ;
Schaffert, Steven ;
Furman, David ;
Caspi, Oren ;
Rosenschein, Uri ;
Khatri, Purvesh ;
Dekker, Cornelia L. ;
Maecker, Holden T. ;
Davis, Mark M. ;
Shen-Orr, Shai S. .
NATURE MEDICINE, 2019, 25 (03) :487-+
[3]  
[Anonymous], 2020, AGING ALBANY NY
[4]   Eleven Telomere, Epigenetic Clock, and Biomarker-Composite Quantifications of Biological Aging: Do They Measure the Same Thing? [J].
Belsky, Daniel W. ;
Moffitt, Terrie E. ;
Cohen, Alan A. ;
Corcoran, David L. ;
Levine, Morgan E. ;
Prinz, Joseph A. ;
Schaefer, Jonathan ;
Sugden, Karen ;
Williams, Benjamin ;
Poulton, Richie ;
Caspi, Avshalom .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2018, 187 (06) :1220-1230
[5]  
Bhaskaran K, 2018, LANCET DIABETES ENDO, V6, P944, DOI [10.1016/s2213-8587(18)30288-2, 10.1016/S2213-8587(18)30288-2]
[6]  
Bobrov E., 2018, AGING CLIN EXP RES, V11
[7]   Epigenetic Predictor of Age [J].
Bocklandt, Sven ;
Lin, Wen ;
Sehl, Mary E. ;
Sanchez, Francisco J. ;
Sinsheimer, Janet S. ;
Horvath, Steve ;
Vilain, Eric .
PLOS ONE, 2011, 6 (06)
[8]   ASSESSMENT OF BIOLOGICAL AGE USING A PROFILE OF PHYSICAL PARAMETERS [J].
BORKAN, GA ;
NORRIS, AH .
JOURNALS OF GERONTOLOGY, 1980, 35 (02) :177-184
[9]   Three-dimensional human facial morphologies as robust aging markers [J].
Chen, Weiyang ;
Qian, Wei ;
Wu, Gang ;
Chen, Weizhong ;
Xian, Bo ;
Chen, Xingwei ;
Cao, Yaqiang ;
Green, Christopher D. ;
Zhao, Fanghong ;
Tang, Kun ;
Han, Jing-Dong J. .
CELL RESEARCH, 2015, 25 (05) :574-587
[10]  
Chouliaras L, 2013, CURR ALZHEIMER RES, V10, P868