Complex solitons in the conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation

被引:163
作者
Gao, Wei [1 ]
Yell, Gulnur [2 ]
Baskonus, Haci Mehmet [3 ]
Cattani, Carlo [4 ]
机构
[1] Yunnan Normal Univ, Sch Informat Sci & Technol, Kunming, Yunnan, Peoples R China
[2] Final Int Univ, Mersin 10, Kyrenia, Turkey
[3] Harran Univ, Fac Educ, Sanliurfa, Turkey
[4] Tuscia Univ, Engn Sch DEIM, Viterbo, Italy
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 01期
关键词
conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation; sine Gordon expansion method; complex soliton solutions; TRAVELING-WAVE SOLUTIONS; HOMOTOPY PERTURBATION METHOD; SYSTEM; SIMULATIONS; MODEL; AKNS;
D O I
10.3934/math.2020034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study on the conformable (2+1)-dimensional Ablowitz-KaupNewellSegur equation in order to show the existence of complex combined dark-bright soliton solutions. To this purpose an effective method which is the sine-Gordon expansion method is used. The 2D and 3D surfaces under some suitable values of parameters are also plotted.
引用
收藏
页码:507 / 521
页数:15
相关论文
共 60 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]   Solitons and other solutions of (3 [J].
Al-Ghafri, K. S. ;
Rezazadeh, Hadi .
APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2019, 4 (02) :289-304
[3]   Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications [J].
Ali, Asghar ;
Seadawy, Aly R. ;
Lu, Dianchen .
OPEN PHYSICS, 2018, 16 (01) :219-226
[4]   An efficient technique for higher order fractional differential equation [J].
Ali, Ayyaz ;
Iqbal, Muhammad Asad ;
Ul-Hassan, Qazi Mahmood ;
Ahmad, Jamshad ;
Mohyud-Din, Syed Tauseef .
SPRINGERPLUS, 2016, 5
[5]  
[Anonymous], 2016, OPT QUANTUM ELECT
[6]  
[Anonymous], 1999, ACTA PHYS SIN
[7]   Fractional discretization: The African's tortoise walk [J].
Atangana, Abdon .
CHAOS SOLITONS & FRACTALS, 2020, 130
[8]   Validity of fractal derivative to capturing chaotic attractors [J].
Atangana, Abdon ;
Khan, Muhammad Altaf .
CHAOS SOLITONS & FRACTALS, 2019, 126 :50-59
[9]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[10]   New properties of conformable derivative [J].
Atangana, Abdon ;
Baleanu, Dumitru ;
Alsaedi, Ahmed .
OPEN MATHEMATICS, 2015, 13 :889-898