Finite volume box schemes and mixed methods

被引:23
作者
Croisille, JP [1 ]
机构
[1] Univ Metz, Dept Math, F-57045 Metz, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2000年 / 34卷 / 05期
关键词
box method; box scheme; mixed finite element method; Petrov-Galerkin method; finite volume method;
D O I
10.1051/m2an:2000117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the numerical analysis on the Poisson problem of two mixed Petrov-Galerkin finite volume schemes for equations in divergence form div phi>(*) over bar * (u, delu) = f. The first scheme, which has been introduced in [22], is a generalization in two dimensions of Keller's box-scheme. The second scheme is the dual of the first one, and is a cell-centered scheme for u, and the flux phi. For the first scheme, the two trial finite element spaces are the nonconforming space of Crouzeix-Raviart for the primal unknown u, and the div-conforming space of Raviart-Thomas for the flux phi. The two test spaces are the functions constant per cell both for the conservative and for the flux equations. We prove an optimal second order error estimate for the box scheme and we emphasize the link between this scheme and the post-processing of Arnold and Brezzi of the classical mixed method.
引用
收藏
页码:1087 / 1106
页数:20
相关论文
共 43 条
[1]  
Achchab B, 1998, NUMER MATH, V80, P159, DOI 10.1007/s002110050364
[2]  
ARNOLD DN, 1985, RAIRO-MATH MODEL NUM, V19, P7
[3]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[4]   SOME ERROR-ESTIMATES FOR THE BOX METHOD [J].
BANK, RE ;
ROSE, DJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :777-787
[5]  
Baranger J, 1996, ESAIM-MATH MODEL NUM, V30, P445
[6]  
BERNARDI C, 1986, CR ACAD SCI I-MATH, V303, P971
[7]   GENERALIZED INF-SUP CONDITIONS FOR TSCHEBYSCHEFF SPECTRAL APPROXIMATION OF THE STOKES PROBLEM [J].
BERNARDI, C ;
CANUTO, C ;
MADAY, Y .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (06) :1237-1271
[8]  
Braess D., 1997, FINITE ELEMENTS
[9]  
BRENNER S. C., 1994, TEXTS APPL MATH, V15
[10]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235