PREVIS: Predictive visual analytics of anatomical variability for radiotherapy decision support

被引:4
作者
Furmanova, Katarina [1 ,2 ]
Muren, Ludvig P. [2 ]
Casares-Magaz, Oscar [2 ]
Moiseenko, Vitali [3 ]
Einck, John P. [3 ]
Pilskog, Sara [4 ]
Raidou, Renata G. [5 ,6 ]
机构
[1] Masaryk Univ, Brno, Czech Republic
[2] Aarhus Univ Hosp, Danish Ctr Particle Therapy, Aarhus, Denmark
[3] Univ Calif San Diego, Dept Radiat Med & Appl Sci, San Diego, CA USA
[4] Univ Bergen, Dept Phys & Technol, Bergen, Norway
[5] TU Wien, Vienna, Austria
[6] Univ Groningen, Groningen, Netherlands
来源
COMPUTERS & GRAPHICS-UK | 2021年 / 97卷
关键词
Medical Visualization; Visual Analytics; Comparative Visualization; Ensemble Visualization; Radiotherapy Planning; Cohort Study; DOMINANT EIGENMODES; URINARY-BLADDER; MODEL; DEFORMATION; PROBABILITY; UNCERTAINTY; MOTION; VISUALIZATION; EXPLORATION;
D O I
10.1016/j.cag.2021.04.010
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Radiotherapy (RT) requires meticulous planning prior to treatment, where the RT plan is optimized with organ delineations on a pre-treatment Computed Tomography (CT) scan of the patient. The conventionally fractionated treatment usually lasts several weeks. Random changes (e.g., rectal and bladder filling in prostate cancer patients) and systematic changes (e.g., weight loss) occur while the patient is being treated. Therefore, the delivered dose distribution may deviate from the planned. Modern technology, in particular image guidance, allows to minimize these deviations, but risks for the patient remain. We present PREVIS: a visual analytics tool for (i) the exploration and prediction of changes in patient anatomy during the upcoming treatment, and (ii) the assessment of treatment strategies, with respect to the anticipated changes. Records of during-treatment changes from a retrospective imaging cohort with complete data are employed in PREVIS, to infer expected anatomical changes of new incoming patients with incomplete data, using a generative model. Abstracted representations of the retrospective cohort partitioning provide insight into an underlying automated clustering, showing main modes of variation for past patients. Interactive similarity representations support an informed selection of matching between new incoming patients and past patients. A Principal Component Analysis (PCA)-based generative model describes the predicted spatial probability distributions of the incoming patient's organs in the upcoming weeks of treatment, based on observations of past patients. The generative model is interactively linked to treatment plan evaluation, supporting the selection of the optimal treatment strategy. We present a usage scenario, demonstrating the applicability of PREVIS in a clinical research setting, and we evaluate our visual analytics tool with eight clinical researchers. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:126 / 138
页数:13
相关论文
共 53 条
[41]  
Smit N.N., 2016, Eurographics Conference on Visualization (EuroVis), P49
[42]   Modelling individual geometric variation based on dominant eigenmodes of organ deformation:: implementation and evaluation [J].
Söhn, M ;
Birkner, M ;
Yan, D ;
Alber, M .
PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (24) :5893-5908
[43]  
Steenwijk MD., 2010, IEEE VIS WORKSH VIS, V3, P3
[44]  
Thorndike RL., 1953, Psychometrika, V18, P267, DOI [DOI 10.1007/BF02289263, 10.1007/BF02289263]
[45]   Treatment simulations with a statistical deformable motion model to evaluate margins for multiple targets in radiotherapy for high-risk prostate cancer [J].
Thornqvist, Sara ;
Hysing, Liv B. ;
Zolnay, Andras G. ;
Sohn, Matthias ;
Hoogeman, Mischa S. ;
Muren, Ludvig P. ;
Bentzen, Lise ;
Heijmen, Ben J. M. .
RADIOTHERAPY AND ONCOLOGY, 2013, 109 (03) :344-349
[46]   Adaptive radiotherapy in locally advanced prostate cancer using a statistical deformable motion model [J].
Thornqvist, Sara ;
Hysing, Liv B. ;
Zolnay, Andras G. ;
Sohn, Matthias ;
Hoogeman, Mischa S. ;
Muren, Ludvig P. ;
Heijmen, Ben J. M. .
ACTA ONCOLOGICA, 2013, 52 (07) :1423-1429
[47]  
van de Wetering H., EUR WORKSH VIS COMP, P193
[48]   RADIATION DOSE-VOLUME EFFECTS OF THE URINARY BLADDER [J].
Viswanathan, Akila N. ;
Yorke, Ellen D. ;
Marks, Lawrence B. ;
Eifel, Patricia J. ;
Shipley, William U. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2010, 76 (03) :S116-S122
[49]   Visual Analytics for model-based medical image segmentation: Opportunities and challenges [J].
von Landesberger, Tatiana ;
Bremm, Sebastian ;
Kirschner, Matthias ;
Wesarg, Stefan ;
Kuijper, Arjan .
EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (12) :4934-4943
[50]   Visualization and Visual Analysis of Ensemble Data: A Survey [J].
Wang, Junpeng ;
Hazarika, Subhashis ;
Li, Cheng ;
Shen, Han-Wei .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2019, 25 (09) :2853-2872