Rigidity of self-shrinkers and translating solitons of mean curvature flows

被引:64
作者
Chen, Qun [1 ]
Qiu, Hongbing [1 ,2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Man Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
关键词
Self-shrinker; Translating soliton; Rigidity; Omori-Yau maximum principle; V-harmonic map; MAXIMUM PRINCIPLE; HARMONIC MAPS; GEOMETRIC APPLICATIONS; MINKOWSKI SPACE; HYPERSURFACES; MANIFOLDS;
D O I
10.1016/j.aim.2016.03.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that any complete m-dimensional spacelike self-shrinkers in pseudo-Euclidean spaces R-n(m+n) must be affine planes, and there exists no complete m-dimensional spacelike translating soliton in R-n(m+n). These results are proved by using a new Omori-Yau maximal principle. We also derive a rigidity theorem of self-shrinking hypersurfaces in Euclidean space with Gauss image lies in a regular ball. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:517 / 531
页数:15
相关论文
共 33 条
[1]  
ABRESCH U, 1986, J DIFFER GEOM, V23, P175
[2]   Spacelike self-similar shrinking solutions of the mean curvature flow in pseudo-Euclidean spaces [J].
Adames, Marcio Rostirolla .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2014, 22 (05) :897-929
[3]   A general form of the weak maximum principle and some applications [J].
Albanese, Guglielmo ;
Alias, Luis J. ;
Rigoli, Marco .
REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (04) :1437-1476
[4]  
Angenent SB., 1992, Nonlinear Differential Equations Appl, V7, P21
[5]   GAUSS MAPS OF TRANSLATING SOLITONS OF MEAN CURVATURE FLOW [J].
Bao, Chao ;
Shi, Yuguang .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (12) :4333-4339
[7]  
Calabi E., 1968, AMS S GLOB AN BERK
[8]   A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension [J].
Cao, Huai-Dong ;
Li, Haizhong .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 46 (3-4) :879-889
[9]   Rigidity of entire self-shrinking solutions to curvature flows [J].
Chau, Albert ;
Chen, Jingyi ;
Yuan, Yu .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 664 :229-239
[10]   A Maximum Principle for Generalizations of Harmonic Maps in Hermitian, Affine, Weyl, and Finsler Geometry [J].
Chen, Qun ;
Jost, Juergen ;
Wang, Guofang .
JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (04) :2407-2426