CURVED FRONTS OF MONOSTABLE REACTION-ADVECTION-DIFFUSION EQUATIONS IN SPACE-TIME PERIODIC MEDIA

被引:23
作者
Bu, Zhen-Hui [1 ]
Wang, Zhi-Cheng [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
关键词
Curved fronts; reaction-advection-diffusion equations; minimal speed; space-time periodic; PYRAMIDAL TRAVELING FRONTS; FISHER-KPP EQUATION; QUALITATIVE PROPERTIES; GLOBAL STABILITY; EXISTENCE; PROPAGATION; UNIQUENESS; SHAPES; WAVES; MODEL;
D O I
10.3934/cpaa.2016.15.139
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is to study traveling fronts of reaction-diffusion equations with space-time periodic advection and nonlinearity in R-N with N >= 3. We are interested in curved fronts satisfying some "pyramidal" conditions at infinity. In R-3, we first show that there is a minimal speed c* such that curved fronts with speed c exist if and only if c >= c*, and then we prove that such curved fronts are decreasing in the direction of propagation. Furthermore, we give a generalization of our results in R-N with N >= 4.
引用
收藏
页码:139 / 160
页数:22
相关论文
共 37 条
[21]   Some dependence results between the spreading speed and the coefficients of the space-time periodic Fisher-KPP equation [J].
Nadin, Gregoire .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2011, 22 :169-185
[22]   Existence and uniqueness of the solution of a space-time periodic reaction-diffusion equation [J].
Nadin, Gregoire .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (06) :1288-1304
[23]   Traveling fronts in space-time periodic media [J].
Nadin, Gregoire .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 92 (03) :232-262
[24]   The principal eigenvalue of a space-time periodic parabolic operator [J].
Nadin, Gregoire .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (02) :269-295
[25]   TRAVELING FRONTS OF PYRAMIDAL SHAPES IN COMPETITION-DIFFUSION SYSTEMS [J].
Ni, Wei-Ming ;
Taniguchi, Masaharu .
NETWORKS AND HETEROGENEOUS MEDIA, 2013, 8 (01) :379-395
[26]  
Ninomiya H, 2006, DISCRETE CONT DYN-A, V15, P819
[27]   Existence and global stability of traveling curved fronts in the Allen-Cahn equations [J].
Ninomiya, H ;
Taniguchi, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 213 (01) :204-233
[28]  
Nolen J, 2005, DISCRETE CONT DYN-A, V13, P1217
[29]  
Nolen J, 2005, DYNAM PART DIFFER EQ, V2, P1
[30]   Periodic pyramidal traveling fronts of bistable reaction-diffusion equations with time-periodic nonlinearity [J].
Sheng, Wei-Jie ;
Li, Wan-Tong ;
Wang, Zhi-Cheng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) :2388-2424