Formation of optical supramolecular structures in a fibre laser by tailoring long-range soliton interactions

被引:103
作者
He, W. [1 ]
Pang, M. [1 ,4 ]
Yeh, D. H. [1 ]
Huang, J. [1 ]
Menyuk, C. R. [2 ]
Russell, P. St J. [1 ,3 ]
机构
[1] Friedrich Alexander Univ, Max Planck Inst Sci Light, Staudtstr 2, D-91058 Erlangen, Germany
[2] Univ Maryland Baltimore Cty, Dept Comp Sci & Elect Engn, Baltimore, MD 21250 USA
[3] Friedrich Alexander Univ, Dept Phys, Staudtstr 2, D-91058 Erlangen, Germany
[4] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key Lab High Field Laser Phys, Shanghai 201800, Peoples R China
关键词
TEMPORAL CAVITY SOLITONS; HARMONIC MODE-LOCKING; REAL-TIME OBSERVATION; INSTABILITY; GENERATION; MECHANISM; DYNAMICS; STORAGE; GHZ;
D O I
10.1038/s41467-019-13746-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Self-assembly of fundamental elements through weak, long-range interactions plays a central role in both supramolecular DNA assembly and bottom-up synthesis of nanostructures. Optical solitons, analogous in many ways to particles, arise from the balance between nonlinearity and dispersion and have been studied in numerous optical systems. Although both short- and long-range interactions between optical solitons have attracted extensive interest for decades, stable soliton supramolecules, with multiple aspects of complexity and flexibility, have thus far escaped experimental observation due to the absence of techniques for enhancing and controlling the long-range inter-soliton forces. Here we report that longrange soliton interactions originating from optoacoustic effects and dispersive-wave radiations can be precisely tailored in a fibre laser cavity, enabling self-assembly of large numbers of optical solitons into highly-ordered supramolecular structures. We demonstrate several features of such optical structures, highlighting their potential applications in optical information storage and ultrafast laser-field manipulation.
引用
收藏
页数:9
相关论文
共 54 条
[1]   Multisoliton solutions of the complex Ginzburg-Landau equation [J].
Akhmediev, NN ;
Ankiewicz, A ;
SotoCrespo, JM .
PHYSICAL REVIEW LETTERS, 1997, 79 (21) :4047-4051
[2]   Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic [J].
Amrani, F. ;
Haboucha, A. ;
Salhi, M. ;
Leblond, H. ;
Komarov, A. ;
Grelu, Ph. ;
Sanchez, F. .
OPTICS LETTERS, 2009, 34 (14) :2120-2122
[3]   Passive harmonic mode locking of soliton crystals [J].
Amrani, Foued ;
Niang, Alioune ;
Salhi, Mohamed ;
Komarov, Andrey ;
Leblond, Herve ;
Sanchez, Francois .
OPTICS LETTERS, 2011, 36 (21) :4239-4241
[4]   Cavity solitons as pixels in semiconductor microcavities [J].
Barland, S ;
Tredicce, JR ;
Brambilla, M ;
Lugiato, LA ;
Balle, S ;
Giudici, M ;
Maggipinto, T ;
Spinelli, L ;
Tissoni, G ;
Knödl, T ;
Miller, M ;
Jäger, R .
NATURE, 2002, 419 (6908) :699-702
[5]   SOLITON PERTURBATIONS - VARIATIONAL PRINCIPLE FOR THE SOLITON PARAMETERS [J].
BONDESON, A ;
LISAK, M ;
ANDERSON, D .
PHYSICA SCRIPTA, 1979, 20 (3-4) :479-485
[6]   Rotating propeller solitons [J].
Carmon, T ;
Uzdin, R ;
Pigier, C ;
Musslimani, ZH ;
Segev, M ;
Nepomnyashchy, A .
PHYSICAL REVIEW LETTERS, 2001, 87 (14) :143901/1-143901/4
[7]   Soliton crystals in Kerr resonators [J].
Cole, Daniel C. ;
Lamb, Erin S. ;
Del'Haye, Pascal ;
Diddams, Scott A. ;
Papp, Scott B. .
NATURE PHOTONICS, 2017, 11 (10) :671-+
[8]   Non-Gaussian error probability in optical soliton transmission [J].
Falkovich, G ;
Kolokolov, I ;
Lebedev, V ;
Mezentsev, V ;
Turitsyn, S .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (1-2) :1-28
[9]  
Firth WJ, 2002, OPT PHOTONICS NEWS, V13, P54, DOI 10.1364/OPN.13.2.000054
[10]   Topological solitons as addressable phase bits in a driven laser [J].
Garbin, Bruno ;
Javaloyes, Julien ;
Tissoni, Giovanna ;
Barland, Stephane .
NATURE COMMUNICATIONS, 2015, 6