Catalytically graphitized freestanding carbon foams for 3D Li-ion microbatteries

被引:6
作者
Kotronia, Antonia [1 ]
Asfaw, Habtom Desta [1 ]
Tai, Cheuk-Wai [2 ]
Edstrom, Kristina [1 ]
Brandell, Daniel [1 ]
机构
[1] Uppsala Univ, Dept Chem, Angstrom Lab, Box 538, SE-75121 Uppsala, Sweden
[2] Stockholm Univ, Dept Mat & Environm Chem, Arrhenius Lab, SE-10691 Stockholm, Sweden
来源
JOURNAL OF POWER SOURCES ADVANCES | 2020年 / 1卷
关键词
Emulsion; Polymer; Carbon; Graphitic foam; Three-dimensional; Li-ion battery; 3-DIMENSIONAL GRAPHENE; TURBOSTRATIC DISORDER; STRESS GRAPHITIZATION; RAMAN-SPECTROSCOPY; LITHIUM; PERFORMANCE; ELECTRODES; INTERCALATION; PRECURSORS; BATTERIES;
D O I
10.1016/j.powera.2020.100002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A long-range graphitic ordering in carbon anodes is desirable since it facilitates Li+ transport within the structure and minimizes irreversible capacity loss. This is of vital concern in porous carbon electrodes that exhibit high surface areas and porosity, and are used in 3D microbatteries. To date, it remains a challenge to graphitize carbon structures with extensive microporosity, since the two properties are considered to be mutually exclusive. In this article, carbon foams with enhanced graphitic ordering are successfully synthesized, while maintaining their bicontinuous porous microstructures. The carbon foams are synthesized from high internal phase emulsion-templated polymers, carbonized at 1000 degrees C and subsequently graphitized at 2200 degrees C. The key to enhancing the graphitization of the bespoke carbon foams is the incorporation of Ca- and Mg-based salts at early stages in the synthesis. The carbon foams graphitized in the presence of these salts exhibit higher gravimetric capacities when cycled at a specific current of 10 mA g(-1) (140 mAh g(-1)) compared to a reference foam (105 mAh g(-1)), which amounts to 33% increase.
引用
收藏
页数:7
相关论文
共 70 条
[11]   Hard Macrocellular Silica Si(HIPE) Foams Templating Micro/Macroporous Carbonaceous Monoliths: Applications as Lithium Ion Battery Negative Electrodes and Electrochemical Capacitors [J].
Brun, Nicolas ;
Prabaharan, Savari R. S. ;
Morcrette, Mathieu ;
Sanchez, Clement ;
Pecastaings, Gilles ;
Derre, Alain ;
Soum, Alain ;
Deleuze, Herve ;
Birot, Marc ;
Backov, Renal .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (19) :3136-3145
[12]   Preparation of MoS2-Coated Three-Dimensional Graphene Networks for High-Performance Anode Material in Lithium-Ion Batteries [J].
Cao, Xiehong ;
Shi, Yumeng ;
Shi, Wenhui ;
Rui, Xianhong ;
Yan, Qingyu ;
Kong, Jing ;
Zhang, Hua .
SMALL, 2013, 9 (20) :3433-3438
[13]   Self-Supported Three-Dimensional Nanoelectrodes for Microbattery Applications [J].
Cheah, Seng Klan ;
Perre, Emilie ;
Rooth, Marten ;
Fondell, Mattis ;
Harsta, Anders ;
Nyholm, Leif ;
Boman, Mats ;
Gustafsson, Torbjorn ;
Lu, Jun ;
Simon, Patrice ;
Edstrom, Kristina .
NANO LETTERS, 2009, 9 (09) :3230-3233
[14]   3D Architectured Anodes for Lithium-Ion Microbatteries with Large Areal Capacity [J].
Cirigliano, Nicolas ;
Sun, Guangyi ;
Membreno, Daniel ;
Malati, Peter ;
Kim, C. J. ;
Dunn, Bruce .
ENERGY TECHNOLOGY, 2014, 2 (04) :362-369
[15]   Assessing the improved performance of freestanding, flexible graphene and carbon nanotube hybrid foams for lithium ion battery anodes [J].
Cohn, Adam P. ;
Oakes, Landon ;
Carter, Rachel ;
Chatterjee, Shahana ;
Westover, Andrew S. ;
Share, Keith ;
Pint, Cary L. .
NANOSCALE, 2014, 6 (09) :4669-4675
[16]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[17]   Three-dimensional graphene/LiFePO4 nanostructures as cathode materials for flexible lithium-ion batteries [J].
Ding, Y. H. ;
Ren, H. M. ;
Huang, Y. Y. ;
Chang, F. H. ;
Zhang, P. .
MATERIALS RESEARCH BULLETIN, 2013, 48 (10) :3713-3716
[18]   Improved Li+ Storage through Homogeneous N-Doping within Highly Branched Tubular Graphitic Foam [J].
Dong, Jinyang ;
Xue, Yanming ;
Zhang, Chao ;
Weng, Qunhong ;
Dai, Pengcheng ;
Yang, Yijun ;
Zhou, Min ;
Li, Cuiling ;
Cui, Qiuhong ;
Kang, Xiaohong ;
Tang, Chengchun ;
Bando, Yoshio ;
Golberg, Dmitri ;
Wang, Xi .
ADVANCED MATERIALS, 2017, 29 (06)
[19]   Electrodeposition as a Tool for 3D Microbattery Fabrication [J].
Edstrom, Kristina ;
Brandell, Daniel ;
Gustafsson, Torbjorn ;
Nyholm, Leif .
ELECTROCHEMICAL SOCIETY INTERFACE, 2011, 20 (02) :41-46
[20]   Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond [J].
Ferrari, AC ;
Robertson, J .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1824) :2477-2512