Data-driven reduced order model with temporal convolutional neural network
被引:86
作者:
Wu, Pin
论文数: 0引用数: 0
h-index: 0
机构:
China Aerodynam Res & Dev Ctr, State Key Lab Aerodynam, Mianyang 621000, Sichuan, Peoples R China
Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R ChinaChina Aerodynam Res & Dev Ctr, State Key Lab Aerodynam, Mianyang 621000, Sichuan, Peoples R China
Wu, Pin
[1
,2
]
Sun, Junwu
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R ChinaChina Aerodynam Res & Dev Ctr, State Key Lab Aerodynam, Mianyang 621000, Sichuan, Peoples R China
Sun, Junwu
[2
]
Chang, Xuting
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R ChinaChina Aerodynam Res & Dev Ctr, State Key Lab Aerodynam, Mianyang 621000, Sichuan, Peoples R China
Chang, Xuting
[2
]
Zhang, Wenjie
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R ChinaChina Aerodynam Res & Dev Ctr, State Key Lab Aerodynam, Mianyang 621000, Sichuan, Peoples R China
Zhang, Wenjie
[2
]
Arcucci, Rossella
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, Data Sci Inst, Data Assimilat Lab, London SW7 2AZ, EnglandChina Aerodynam Res & Dev Ctr, State Key Lab Aerodynam, Mianyang 621000, Sichuan, Peoples R China
Arcucci, Rossella
[3
]
Guo, Yike
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R China
Imperial Coll London, Data Sci Inst, Data Assimilat Lab, London SW7 2AZ, EnglandChina Aerodynam Res & Dev Ctr, State Key Lab Aerodynam, Mianyang 621000, Sichuan, Peoples R China
Guo, Yike
[2
,3
]
Pain, Christopher C.
论文数: 0引用数: 0
h-index: 0
机构:
Imperial Coll London, Data Sci Inst, Data Assimilat Lab, London SW7 2AZ, EnglandChina Aerodynam Res & Dev Ctr, State Key Lab Aerodynam, Mianyang 621000, Sichuan, Peoples R China
Pain, Christopher C.
[3
]
机构:
[1] China Aerodynam Res & Dev Ctr, State Key Lab Aerodynam, Mianyang 621000, Sichuan, Peoples R China
[2] Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R China
[3] Imperial Coll London, Data Sci Inst, Data Assimilat Lab, London SW7 2AZ, England
Reduced order model;
Proper orthogonal decomposition;
Deep learning;
Temporal convolutional network;
SIMULATION;
FLUID;
REDUCTION;
D O I:
10.1016/j.cma.2019.112766
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
This paper presents a novel model reduction method based on proper orthogonal decomposition and temporal convolutional neural network. The method generates basis functions of the flow field by proper orthogonal decomposition, and the coefficients are taken as the low-dimensional features. Temporal convolutional neural network is used to construct the model for predicting low-dimensional features. In this work, the training data are obtained from high fidelity numerical simulation. Compared with recurrent networks, temporal convolutional neural network is more effective with fewer parameters. The model reduction method developed here depends only on the solution of flow field. The performance of the new reduced order model is evaluated using numerical case: flow past a cylinder. Experimental results illustrate that time cost is reduced by three orders of magnitude, and convolutional architecture is beneficial to construct reduced order model. The speed-up ratio is linear with the computational scale of the numerical simulation. (C) 2019 Elsevier B.V. All rights reserved.
机构:
Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USAStanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
Amsallem, David
Farhat, Charbel
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USAStanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
机构:
Univ Paris 11, Lab Signals & Syst L2S, Orsay CNRS Supelec, F-91192 Gif Sur Yvette, FranceUniv Paris 11, Lab Signals & Syst L2S, Orsay CNRS Supelec, F-91192 Gif Sur Yvette, France
Audouze, Christophe
De Vuyst, Florian
论文数: 0引用数: 0
h-index: 0
机构:
ENS Cachan, Lab CMLA, F-92235 Cachan, FranceUniv Paris 11, Lab Signals & Syst L2S, Orsay CNRS Supelec, F-91192 Gif Sur Yvette, France
De Vuyst, Florian
Nair, Prasanth B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toronto, Inst Aerosp Studies, N York, ON M3H 5T6, CanadaUniv Paris 11, Lab Signals & Syst L2S, Orsay CNRS Supelec, F-91192 Gif Sur Yvette, France
机构:
Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USAStanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
Amsallem, David
Farhat, Charbel
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USAStanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
机构:
Univ Paris 11, Lab Signals & Syst L2S, Orsay CNRS Supelec, F-91192 Gif Sur Yvette, FranceUniv Paris 11, Lab Signals & Syst L2S, Orsay CNRS Supelec, F-91192 Gif Sur Yvette, France
Audouze, Christophe
De Vuyst, Florian
论文数: 0引用数: 0
h-index: 0
机构:
ENS Cachan, Lab CMLA, F-92235 Cachan, FranceUniv Paris 11, Lab Signals & Syst L2S, Orsay CNRS Supelec, F-91192 Gif Sur Yvette, France
De Vuyst, Florian
Nair, Prasanth B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toronto, Inst Aerosp Studies, N York, ON M3H 5T6, CanadaUniv Paris 11, Lab Signals & Syst L2S, Orsay CNRS Supelec, F-91192 Gif Sur Yvette, France