Lane-Emden-Fowler equations with convection and singular potential

被引:79
作者
Dupaigne, Louis
Ghergu, Marius
Radulescu, Vicentiu
机构
[1] Univ Picardie Jules Verne, Fac Math & Informat, LAMFA, F-80039 Amiens, France
[2] Simion Stoilow Romanian Acad, Math Inst, RO-014700 Bucharest, Romania
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2007年 / 87卷 / 06期
关键词
Lane-Emden-Fowler equations; convection term; singular potential;
D O I
10.1016/j.matpur.2007.03.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with singular elliptic problems of the form -Delta u +/- p(d(x))g(u) = lambda f(x, u) + mu vertical bar del u vertical bar(a) in Omega, where Omega is a smooth bounded domain in R-N, d(x) = dist(x, partial derivative Omega), lambda > 0, mu epsilon R, 0 < a <= 2, and f is a nondecreasing function. We assume that p(d(x)) is a positive weight with possible singular behavior on the boundary of Omega and that the nonlinearity g is unbounded around the origin. Taking into account the competition between the anisotropic potential p(d(x)), the convection term vertical bar del u vertical bar(a), and the singular nonlinearity g, we establish various existence and nonexistence results. (c) 2007 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:563 / 581
页数:19
相关论文
共 32 条
[1]   Existence theory for single and multiple solutions to singular positone boundary value problems [J].
Agarwal, RP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 175 (02) :393-414
[2]   BROWNIAN-MOTION AND HARNACK INEQUALITY FOR SCHRODINGER-OPERATORS [J].
AIZENMAN, M ;
SIMON, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (02) :209-273
[3]   WEAK SOLUTIONS OF SOME QUASI-LINEAR ELLIPTIC-EQUATIONS WITH DATA MEASURES [J].
ALAA, NE ;
PIERRE, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (01) :23-35
[4]  
BENILAN P, 1975, ANN SCUOLA NORM SU S, V2, P523
[5]  
BRAUNER CM, 1980, LECT NOTES MATH, V782, P61
[6]   MINIMAL-SURFACES WITH ISOLATED SINGULARITIES [J].
CAFFARELLI, L ;
HARDT, R ;
SIMON, L .
MANUSCRIPTA MATHEMATICA, 1984, 48 (1-3) :1-18
[7]  
CHOQUETBRUHAT Y, 1972, ACAD SCI PARIS A, V274, P81
[8]   Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane-Emden-Fowler type [J].
Cîrstea, F ;
Ghergu, M ;
Radulescu, V .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (04) :493-508
[9]   ON A SINGULAR NONLINEAR DIRICHLET PROBLEM [J].
COCLITE, MM ;
PALMIERI, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (10) :1315-1327
[10]  
Crandall M.G., 1977, Commun. Partial. Differ. Equ., V2, P193, DOI DOI 10.1080/03605307708820029