Nonlinear dielectric response of periodic composite materials

被引:7
作者
Kolpakov, A.
Tagantsev, A. K.
Berlyand, L.
Kanareykin, A.
机构
[1] Siberian State Univ Telecommun, Dept Telecommun Networks & Comp Syst, Novosibirsk 630009, Russia
[2] Ecole Polytech Fed Lausanne, Swiss Fed Inst Technol, Ceram Lab, CH-1015 Lausanne, Switzerland
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[4] Euclid TechLabs LLC, Solon, OH 44139 USA
基金
美国国家科学基金会;
关键词
nonlinear composite; electrostatic problem; overall properties; local electric field; homogenization; tunability;
D O I
10.1007/s10832-007-9015-8
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper addresses the rigorous treatment of the tunability effect (dc electric field driven variation of the permittivity) in a high-contrast two dimensional periodic composite (a matrix of a large dielectric constant ferroelectric material with linear dielectric inclusions). The theoretical analysis here shows that the trend established for the case of low linear dielectric concentrations (that the dilution with a low permittivity dielectric does not result in decrease of the tunability of the composite material), can hold for appreciable dielectric concentrations. We have even documented a pronounced increase of the tunability. The results of our simulations are in qualitative agreement with the experimental data on the composite effect in ferroelectric/dielectric binary-phase systems. The result of the numerical analysis gives no support to the "decoupled approximation" in the effective medium approach often used for the description of the dielectric non-linearity of composites.
引用
收藏
页码:129 / 137
页数:9
相关论文
共 50 条
  • [21] Size-dependent Bruggeman approach for dielectric-magnetic composite materials
    Lakhtakia, A
    Mackay, TG
    [J]. AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2005, 59 (06) : 348 - 351
  • [22] Nonlinear analysis of microscopic instabilities in fiber-reinforced composite materials
    De Maio, Umberto
    Greco, Fabrizio
    Leonetti, Lorenzo
    Pranno, Andrea
    Sgambitterra, Girolamo
    [J]. 1ST VIRTUAL CONFERENCE ON STRUCTURAL INTEGRITY (VCSI1), 2020, 25 : 400 - 412
  • [23] EFFECTIVE STIFFNESS TENSOR OF COMPOSITE MATERIALS WITH INCLUSIONS OF RANDOM SIZE AND PERIODIC LOCATION OF THEIR CENTERS
    Vlasov, A. N.
    Vlasov, D. A.
    Sorokin, G. S.
    Karnet, Yu. N.
    [J]. COMPOSITES-MECHANICS COMPUTATIONS APPLICATIONS, 2024, 15 (04): : 63 - 75
  • [24] On the Convergence of a Non-incremental Homogenization Method for Nonlinear Elastic Composite Materials
    Mathias Brieu
    Jocelyne Erhel
    [J]. Numerical Algorithms, 2003, 32 : 141 - 161
  • [25] On the convergence of a non-incremental homogenization method for nonlinear elastic composite materials
    Brieu, M
    Erhel, J
    [J]. NUMERICAL ALGORITHMS, 2003, 32 (2-4) : 141 - 161
  • [26] Higher order response of nonlinear composite in external AC electric field
    Wei, EB
    Song, JB
    Tian, JW
    Gu, GQ
    [J]. PHYSICS LETTERS A, 2003, 309 (1-2) : 160 - 164
  • [27] A multifield continuum model for the description of the response of microporous/microcracked composite materials
    Pau, Annamaria
    Trovalusci, Patrizia
    [J]. MECHANICS OF MATERIALS, 2021, 160
  • [28] Unit Cell Synthesis for Design of Materials With Targeted Nonlinear Deformation Response
    Satterfield, Zachary
    Kulkarni, Neehar
    Fadel, Georges
    Li, Gang
    Coutris, Nicole
    Castanier, Matthew P.
    [J]. JOURNAL OF MECHANICAL DESIGN, 2017, 139 (12)
  • [29] Effective Response of Nonlinear Composite under External AC and DC Electric Field
    LIU Ye
    LIANG Fang-Chu
    SHEN Hong-Liang Institute of Oceanology
    [J]. CommunicationsinTheoreticalPhysics, 2005, 44 (10) : 731 - 734
  • [30] Effective response of nonlinear composite under external AC and DC electric field
    Liu, Y
    Liang, FC
    Shen, HL
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (04) : 731 - 734