Multiplicity and concentration of solutions for a fractional Schrodinger equation via Nehari method and pseudo-index theory

被引:2
作者
Liu, Min [1 ,2 ]
Tang, Zhongwei [2 ]
机构
[1] Liaoning Shihua Univ, Sch Sci, Fushun 113001, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
POSITIVE SOLUTIONS; COMPACTNESS; UNIQUENESS; EXISTENCE; SYMMETRY;
D O I
10.1063/1.5051462
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a nonlinear fractional Schrodinger equation motivated by nonlocal quantum mechanics. Under suitable assumptions on the potentials, we explore the existence, concentration, convergence, and decay estimates of ground state solutions for this equation. Moreover, the multiplicity of solutions is constructed via pseudo index theory, and the existence of sign changing solutions is obtained via the Nehari method. Published under license by AIP Publishing.
引用
收藏
页数:25
相关论文
共 31 条
[1]  
Alves CO, 2016, CALC VAR PARTIAL DIF, V55, DOI 10.1007/s00526-016-0983-x
[2]   Multiplicity results for some nonlinear Schrodinger equations with potentials [J].
Ambrosetti, A ;
Malchiodi, A ;
Secchi, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 159 (03) :253-271
[3]   UNIQUENESS AND RELATED ANALYTIC PROPERTIES FOR THE BENJAMIN-ONO-EQUATION - A NONLINEAR NEUMANN PROBLEM IN THE PLANE [J].
AMICK, CJ ;
TOLAND, JF .
ACTA MATHEMATICA, 1991, 167 (1-2) :107-126
[4]  
Applebaum D., 2004, NOT AM MATH SOC, V51, P1336
[5]   ON CRITICAL-POINT THEORY FOR INDEFINITE FUNCTIONALS IN THE PRESENCE OF SYMMETRIES [J].
BENCI, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 274 (02) :533-572
[6]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[7]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[8]   SOME EXISTENCE RESULTS FOR SUPERLINEAR ELLIPTIC BOUNDARY-VALUE-PROBLEMS INVOLVING CRITICAL EXPONENTS [J].
CERAMI, G ;
SOLIMINI, S ;
STRUWE, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 69 (03) :289-306
[9]   Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian [J].
Chang, Xiaojun ;
Wang, Zhi-Qiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (08) :2965-2992
[10]   Best constants for Sobolev inequalities for higher order fractional derivatives [J].
Cotsiolis, A ;
Tavoularis, NK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (01) :225-236