Variational analysis of a mixed element/volume scheme with fourth-order viscosity on general triangulations

被引:5
作者
Mer, K
机构
[1] INRIA, F-06902 Sophia Antipolis, France
[2] Univ Nice, Sophia Antipolis, France
关键词
D O I
10.1016/S0045-7825(97)00064-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The accuracy of a mixed Finite Element/Finite Volume scheme on unstructured triangular meshes is obtained by a variational error estimate analysis, for a scalar linear stationary convection-diffusion problem. The scheme studied here is similar to the Mavriplis-Jameson scheme on triangles and is composed of an equivalent centered Finite Volume/Lagrange-Galerkin formulation, and a fourth-difference artificial dissipation term for the stabilization of first derivatives.
引用
收藏
页码:45 / 62
页数:18
相关论文
共 33 条
[1]  
[Anonymous], 1982, THESIS CHALMERS U TE
[2]   CONSTRUCTION OF TVD-LIKE ARTIFICIAL VISCOSITIES ON 2-DIMENSIONAL ARBITRARY FEM GRIDS [J].
ARMINJON, P ;
DERVIEUX, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 106 (01) :176-198
[3]  
ARMINJON P, 1988, NOTES NUMER FLUID ME, V24
[4]  
BABA K, 1981, RAIRO-ANAL NUMER-NUM, V15, P3
[5]  
BILLEY V, 1987, 8 INT C COMP MATH AP
[6]  
CEA J, 1964, THESIS U PARIS
[7]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[8]  
CIARLET PG, 1972, ARCH RATION MECH AN, V46, P178
[9]  
DEEVIEUX A, 1992, 1703 INRIA
[10]   GALERKIN METHODS FOR FIRST-ORDER HYPERBOLICS - EXAMPLE [J].
DUPONT, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (05) :890-899