Genome engineering of stem cell organoids for disease modeling

被引:25
作者
Sun, Yingmin [1 ,2 ]
Ding, Qiurong [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Nutr Sci, CAS Key Lab Nutr & Metab, Shanghai 200031, Peoples R China
[2] Univ Chinese Acad Sci, Shanghai 200031, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
pluripotent/adult stem cell; tissue organoid; genome editing; precision medicine;
D O I
10.1007/s13238-016-0368-0
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Precision medicine emerges as a new approach that takes into account individual variability. Successful realization of precision medicine requires disease models that are able to incorporate personalized disease information and recapitulate disease development processes at the molecular, cellular and organ levels. With recent development in stem cell field, a variety of tissue organoids can be derived from patient specific pluripotent stem cells and adult stem cells. In combination with the state-of-the-art genome editing tools, organoids can be further engineered to mimic disease-relevant genetic and epigenetic status of a patient. This has therefore enabled a rapid expansion of sophisticated in vitro disease models, offering a unique system for fundamental and biomedical research as well as the development of personalized medicine. Here we summarize some of the latest advances and future perspectives in engineering stem cell organoids for human disease modeling.
引用
收藏
页码:315 / 327
页数:13
相关论文
共 106 条
[51]  
Mariani J., Coppola G., Zhang P., Abyzov A., Provini L., Tomasini L., Amenduni M., Szekely A., Palejev D., Wilson M., Et al., FOXG1-dependent dysregulation of GABA/Glutamate neuron differentiation of autism spectrum disorders, Cell, 162, pp. 375-390, (2015)
[52]  
Maschmeyer I., Lorenz A.K., Schimek K., Hasenberg T., Ramme A.P., Hubner J., Lindner M., Drewell C., Bauer S., Thomas A., Et al., A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents, Lab Chip, 15, pp. 2688-2699, (2015)
[53]  
Matano M., Date S., Shimokawa M., Takano A., Fujii M., Ohta Y., Watanabe T., Kanai T., Sato T., Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids, Nat Med, 21, pp. 256-262, (2015)
[54]  
McCracken K.W., Howell J.C., Wells J.M., Spence J.R., Generating human intestinal tissue from pluripotent stem cells in vitro, Nat Protoc, 6, pp. 1920-1928, (2011)
[55]  
McCracken K.W., Cata E.M., Crawford C.M., Sinagoga K.L., Schumacher M., Rockich B.E., Tsai Y.H., Mayhew C.N., Spence J.R., Zavros Y., Et al., Modeling human development and disease in pluripotent stem-cell-derived gastric organoids, Nature, 516, pp. 400-404, (2014)
[56]  
Mondrinos M.J., Koutzaki S., Jiwanmall E., Li M., Dechadarevian J.P., Lelkes P.I., Finck C.M., Engineering three-dimensional pulmonary tissue constructs, Tissue Eng, 12, pp. 717-728, (2006)
[57]  
Mondrinos M.J., Jones P.L., Finck C.M., Lelkes P.I., Engineering de novo assembly of fetal pulmonary organoids, Tissue Eng Part A, 20, pp. 2892-2907, (2014)
[58]  
Muguruma K., Nishiyama A., Ono Y., Miyawaki H., Mizuhara E., Hori S., Kakizuka A., Obata K., Yanagawa Y., Hirano T., Et al., Ontogeny-recapitulating generation and tissue integration of ES cell-derived Purkinje cells, Nat Neurosci, 13, pp. 1171-1180, (2010)
[59]  
Muguruma K., Nishiyama A., Kawakami H., Hashimoto K., Sasai Y., Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells, Cell Rep, 10, pp. 537-550, (2015)
[60]  
Musunuru K., Genome editing of human pluripotent stem cells to generate human cellular disease models, Dis Model Mech, 6, pp. 896-904, (2013)