Genome engineering of stem cell organoids for disease modeling

被引:25
作者
Sun, Yingmin [1 ,2 ]
Ding, Qiurong [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Nutr Sci, CAS Key Lab Nutr & Metab, Shanghai 200031, Peoples R China
[2] Univ Chinese Acad Sci, Shanghai 200031, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
pluripotent/adult stem cell; tissue organoid; genome editing; precision medicine;
D O I
10.1007/s13238-016-0368-0
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Precision medicine emerges as a new approach that takes into account individual variability. Successful realization of precision medicine requires disease models that are able to incorporate personalized disease information and recapitulate disease development processes at the molecular, cellular and organ levels. With recent development in stem cell field, a variety of tissue organoids can be derived from patient specific pluripotent stem cells and adult stem cells. In combination with the state-of-the-art genome editing tools, organoids can be further engineered to mimic disease-relevant genetic and epigenetic status of a patient. This has therefore enabled a rapid expansion of sophisticated in vitro disease models, offering a unique system for fundamental and biomedical research as well as the development of personalized medicine. Here we summarize some of the latest advances and future perspectives in engineering stem cell organoids for human disease modeling.
引用
收藏
页码:315 / 327
页数:13
相关论文
共 106 条
[1]  
Aihara E., Mahe M.M., Schumacher M.A., Matthis A.L., Feng R., Ren W., Noah T.K., Matsu-ura T., Moore S.R., Hong C.I., Et al., Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid, Sci Rep, 5, (2015)
[2]  
Amabile A., Migliara A., Capasso P., Biffi M., Cittaro D., Naldini L., Lombardo A., Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing, Cell, 167, pp. 219-232, (2016)
[3]  
Barker N., Huch M., Kujala P., van de Wetering M., Snippert H.J., van Es J.H., Sato T., Stange D.E., Begthel H., van den Born M., Et al., Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro, Cell Stem Cell, 6, pp. 25-36, (2010)
[4]  
Bartfeld S., Bayram T., van de Wetering M., Huch M., Begthel H., Kujala P., Vries R., Peters P.J., Clevers H., In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection, Gastroenterology, 148, pp. 126-136, (2015)
[5]  
Ben-Zvi D., Melton D.A., Modeling human nutrition using human embryonic stem cells, Cell, 161, pp. 12-17, (2015)
[6]  
Bigorgne A.E., Farin H.F., Lemoine R., Mahlaoui N., Lambert N., Gil M., Schulz A., Philippet P., Schlesser P., Abrahamsen T.G., Et al., TTC7A mutations disrupt intestinal epithelial apicobasal polarity, J Clin Invest, 124, pp. 328-337, (2014)
[7]  
Boj S.F., Hwang C.I., Baker L.A., Chio I.I., Engle D.D., Corbo V., Jager M., Ponz-Sarvise M., Tiriac H., Spector M.S., Et al., Organoid models of human and mouse ductal pancreatic cancer, Cell, 160, pp. 324-338, (2015)
[8]  
Canver M.C., Smith E.C., Sher F., Pinello L., Sanjana N.E., Shalem O., Chen D.D., Schupp P.G., Vinjamur D.S., Garcia S.P., Et al., BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis, Nature, 527, pp. 192-197, (2015)
[9]  
Chen B., Gilbert L.A., Cimini B.A., Schnitzbauer J., Zhang W., Li G.W., Park J., Blackburn E.H., Weissman J.S., Qi L.S., Et al., Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system, Cell, 155, pp. 1479-1491, (2013)
[10]  
Chen S., Sanjana N.E., Zheng K., Shalem O., Lee K., Shi X., Scott D.A., Song J., Pan J.Q., Weissleder R., Et al., Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis, Cell, 160, pp. 1246-1260, (2015)