On the weak and strong convergence of the proximal point algorithm in reflexive Banach spaces

被引:15
作者
Dadashi, Vahid [1 ]
Khatibzadeh, Hadi [2 ]
机构
[1] Islamic Azad Univ, Sari Branch, Dept Math, Sari, Iran
[2] Univ Zanjan, Dept Math, Zanjan, Iran
关键词
Proximal point algorithm; maximal monotone operator; phi-strongly monotone; phi-generalized monotone; phi-expansive operator; equilibrium problems; MONOTONE-OPERATORS; EQUILIBRIUM PROBLEMS;
D O I
10.1080/02331934.2017.1337764
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, some proximal point algorithms ( PPAs) for maximal monotone operators in Banach spaces are considered. We obtain some results on the boundedness and the convergence of sequences generated by the PPAs with some assumptions. We can also get zero of maximal f-expansive operator and maximal f-monotone at zero operator using this method and then we apply it for finding a solution of the equilibrium problem.
引用
收藏
页码:1487 / 1494
页数:8
相关论文
共 30 条
[1]  
Ait Mansour M., 2003, COMMUN APPL ANAL, V7, P369
[2]   Another version of the proximal point algorithm in a Banach space [J].
Alber, Ya I. ;
Yao, Jen-Chih .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (09) :3159-3171
[3]  
[Anonymous], 1990, MATH ITS APPL
[4]  
Barbu V., 2012, SPRINGER MONOGRAPHS
[5]  
Blum E., 1994, Math. student, V63, P123
[6]   A proximal point algorithm converging strongly for general errors [J].
Boikanyo, O. A. ;
Morosanu, G. .
OPTIMIZATION LETTERS, 2010, 4 (04) :635-641
[7]  
Boikanyo O. A, 2009, MATH SCI RES J, V13, P101
[8]   Strong convergence of a proximal point algorithm with bounded error sequence [J].
Boikanyo, Oganeditse A. ;
Morosanu, Gheorghe .
OPTIMIZATION LETTERS, 2013, 7 (02) :415-420
[9]   INFINITE PRODUCTS OF RESOLVENTS [J].
BREZIS, H ;
LIONS, PL .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (04) :329-345
[10]   A proximal point method for the variational inequality problem in Banach spaces [J].
Burachik, RS ;
Scheimberg, S .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (05) :1633-1649