Asymptotic performance analysis of Bayesian target recognition

被引:23
作者
Grenander, U [1 ]
Srivastava, A
Miller, MI
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[2] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
[3] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
关键词
Bayesian ATR; deformable templates; Laplace's asymptoties; nuisance integration;
D O I
10.1109/18.850712
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This correspondence investigates the asymptotic performance of Bayesian target recognition algorithms using deformable-template representations. Rigid computer-aided design (CAD) models represent the underlying targets; low-dimensional matrix Lie-groups (rotation and translation) extend them to particular instances. Remote sensors observing the targets are modeled as projective transformations, converting three-dimensional scenes into random images. Bayesian target recognition corresponds to hypothesis selection in the presence of nuisance parameters; its performance is quantified as the Bayes' error. Analytical expressions for this error probability in small noise situations are derived, yielding asymptotic error rates for exponential error probability decay.
引用
收藏
页码:1658 / 1665
页数:8
相关论文
共 29 条
[1]  
AGARWAL JK, 1997, LECT NOTES COMPUTER, V343
[2]  
BARNDORFFNIELSE.OE, 1989, ASYMPTOTIC TECHNIQUE
[3]   Bayesian hypotheses testing using posterior density ratios [J].
Basu, S .
STATISTICS & PROBABILITY LETTERS, 1996, 30 (01) :79-86
[4]   ROBUST BAYESIAN HYPOTHESIS-TESTING IN THE PRESENCE OF NUISANCE PARAMETERS [J].
BERGER, J ;
MORTERA, J .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1994, 40 (2-3) :357-373
[5]   INFORMATION-THEORETIC ASYMPTOTICS OF BAYES METHODS [J].
CLARKE, BS ;
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (03) :453-471
[6]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[7]  
DUDGEON DE, 1998, 1051 MIT LINC LABS
[8]   On some simple estimates of ATR performance, and initial comparisons for a small data set [J].
Garber, F ;
Zelnio, E .
ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY IV, 1997, 3070 :150-161
[9]   Hilbert-Schmidt lower bounds for estimators on matrix Lie groups for ATR [J].
Grenander, U ;
Miller, MI ;
Srivastava, A .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (08) :790-802
[10]  
GRENANDER U, 1998, MONOGRAPH DEP STAT