Optically oriented attachment of nanoscale metal-semiconductor heterostructures in organic solvents via photonic nanosoldering

被引:13
作者
Crane, Matthew J. [1 ]
Pandres, Elena P. [1 ]
Davis, E. James [1 ]
Holmberg, Vincent C. [1 ,2 ,3 ]
Pauzauskie, Peter J. [1 ,2 ,4 ,5 ,6 ]
机构
[1] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA
[2] Univ Washington, Mol Engn & Sci Inst, Seattle, WA 98195 USA
[3] Univ Washington, Clean Energy Inst, Seattle, WA 98195 USA
[4] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
[5] Univ Washington, Inst Nanoengn Syst, Seattle, WA 98195 USA
[6] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA
基金
美国国家科学基金会;
关键词
DISCRETE-DIPOLE APPROXIMATION; COLLOIDAL PARTICLES; MANIPULATION; NANOWIRES; GROWTH; NANOPARTICLES; TWEEZERS; FORCES; WATER; AU;
D O I
10.1038/s41467-019-12827-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As devices approach the single-nanoparticle scale, the rational assembly of nanomaterial heterojunctions remains a persistent challenge. While optical traps can manipulate objects in three dimensions, to date, nanoscale materials have been trapped primarily in aqueous solvents or vacuum. Here, we demonstrate the use of optical traps to manipulate, align, and assemble metal-seeded nanowire building blocks in a range of organic solvents. Anisotropic radiation pressure generates an optical torque that orients each nanowire, and subsequent trapping of aligned nanowires enables deterministic fabrication of arbitrarily long heterostructures of periodically repeating bismuth-nanocrystal/germanium-nanowire junctions. Heat transport calculations, back-focal-plane interferometry, and optical images reveal that the bismuth nanocrystal melts during trapping, facilitating tip-to-tail "nanosoldering" of the germanium nanowires. These bismuth-semiconductor interfaces may be useful for quantum computing or thermoelectric applications. In addition, the ability to trap nanostructures in oxygen- and water-free organic media broadly expands the library of materials available for optical manipulation and single-particle spectroscopy.
引用
收藏
页数:7
相关论文
共 64 条
[1]   Manipulation and assembly of nanowires with holographic optical traps [J].
Agarwal, R ;
Ladavac, K ;
Roichman, Y ;
Yu, GH ;
Lieber, CM ;
Grier, DG .
OPTICS EXPRESS, 2005, 13 (22) :8906-8912
[2]   OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM ;
BJORKHOLM, JE ;
CHU, S .
OPTICS LETTERS, 1986, 11 (05) :288-290
[3]   ACCELERATION AND TRAPPING OF PARTICLES BY RADIATION PRESSURE [J].
ASHKIN, A .
PHYSICAL REVIEW LETTERS, 1970, 24 (04) :156-&
[4]   DIELECTRIC FUNCTIONS AND OPTICAL-PARAMETERS OF SI, GE, GAP, GAAS, GASB, INP, INAS, AND INSB FROM 1.5 TO 6.0 EV [J].
ASPNES, DE ;
STUDNA, AA .
PHYSICAL REVIEW B, 1983, 27 (02) :985-1009
[5]   Assembly of Colloidal Semiconductor Nanorods in Solution by Depletion Attraction [J].
Baranov, Dmitry ;
Fiore, Angela ;
van Huis, Marijn ;
Giannini, Cinzia ;
Falqui, Andrea ;
Lafont, Ugo ;
Zandbergen, Henny ;
Zanella, Marco ;
Cingolani, Roberto ;
Manna, Liberato .
NANO LETTERS, 2010, 10 (02) :743-749
[6]   An Optical Tweezers Platform for Single Molecule Force Spectroscopy in Organic Solvents [J].
Black, Jacob W. ;
Kamenetska, Maria ;
Ganim, Ziad .
NANO LETTERS, 2017, 17 (11) :6598-6605
[7]   Radiation torque and force on optically trapped linear nanostructures [J].
Borghese, F. ;
Denti, P. ;
Saija, R. ;
Iati, M. A. ;
Marago, O. M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (16)
[8]   Gelation of plasmonic metal oxide nanocrystals by polymer-induced depletion attractions [J].
Cabezas, Camila A. Saez ;
Ong, Gary K. ;
Jadrich, Ryan B. ;
Lindquist, Beth A. ;
Agrawal, Ankit ;
Truskett, Thomas M. ;
Milliron, Delia J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (36) :8925-8930
[9]   Superheating Water by CW Excitation of Gold Nanodots [J].
Carlson, Michael T. ;
Green, Andrew J. ;
Richardson, Hugh H. .
NANO LETTERS, 2012, 12 (03) :1534-1537
[10]  
Carmalt C.J., 2007, Inorganic Syntheses, P98