Boosting Hole Mobility in Coherently Strained [110]-Oriented Ge-Si Core-Shell Nanowires

被引:60
作者
Conesa-Boj, S. [1 ,2 ]
Li, A. [1 ,2 ]
Koelling, S. [2 ]
Brauns, M. [4 ]
Ridderbos, J. [4 ]
Nguyen, T. T. [4 ]
Verheijen, M. A. [1 ,3 ]
Koenraad, P. M. [2 ]
Zwanenburg, F. A. [4 ]
Bakkers, E. P. A. M. [1 ,2 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[2] TU Eindhoven, Dept Appl Phys, Den Dolech 2, NL-5612 AZ Eindhoven, Netherlands
[3] Philips Innovat Serv Eindhoven, High Tech Campus 11, NL-5656 AE Eindhoven, Netherlands
[4] Univ Twente, MESA Inst Nanotechnol, NanoElect Grp, POB 217, NL-7500 AE Enschede, Netherlands
基金
欧洲研究理事会;
关键词
Nanowire; silicon; germanium; mobility; defect-free; epitaxy; FIELD-EFFECT TRANSISTORS; CORE/SHELL NANOWIRES; QUANTUM DOTS; RELAXATION; GROWTH;
D O I
10.1021/acs.nanolett.6b04891
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ability of core-shell nanowires to overcome existing limitations of heterostructures is one of the key ingredients for the design of next generation devices. This requires a detailed understanding of the mechanism for strain relaxation in these systems in order to eliminate strain-induced defect formation and thus to boost important electronic properties such as carrier mobility. Here we demonstrate how the hole mobility of [110]-oriented Ge-Si core-shell nanowires can be substantially enhanced thanks to the realization of large band offset and coherent strain in the system, reaching values as high as 4200 cm(2)/(Vs) at 4 K and 1600 cm(2)/(Vs) at room temperature for high hole densities of 10(19) cm(-3). We present a direct correlation of (i) mobility, (ii) crystal direction, (iii) diameter, and (iv) coherent strain, all of which are extracted in our work for individual nanowires. Our results imply [110]-oriented Ge-Si core-shell nanowires as a promising candidate for future electronic and quantum transport devices.
引用
收藏
页码:2259 / 2264
页数:6
相关论文
共 28 条
[1]   Reduced quantum confinement effect and electron-hole separation in SiGe nanowires [J].
Amato, Michele ;
Palummo, Maurizia ;
Ossicini, Stefano .
PHYSICAL REVIEW B, 2009, 79 (20)
[2]   Diameter-Independent Hole Mobility in Ge/Si Core/Shell Nanowire Field Effect Transistors [J].
Binh-Minh Nguyen ;
Taur, Yuan ;
Picraux, S. Tom ;
Dayeh, Shadi A. .
NANO LETTERS, 2014, 14 (02) :585-591
[3]   Misfit Strain Relaxation Mechanisms in Core/Shell Nanowires [J].
Chu, Haijian ;
Zhou, Caizhi ;
Wang, Jian ;
Beyerlein, Irene J. .
JOM, 2012, 64 (10) :1258-1262
[4]   Plastic and Elastic Strain Fields in GaAs/Si Core-Shell Nanowires [J].
Conesa-Boj, Sonia ;
Boioli, Francesca ;
Russo-Averchi, Eleonora ;
Dunand, Sylvain ;
Heiss, Martin ;
Rueffer, Daniel ;
Wyrsch, Nicolas ;
Ballif, Christophe ;
Miglio, Leo ;
Fontcuberta i Morral, Anna .
NANO LETTERS, 2014, 14 (04) :1859-1864
[5]   Direct Measurement of Coherency Limits for Strain Relaxation in Heteroepitaxial Core/Shell Nanowires [J].
Dayeh, Shadi A. ;
Tang, Wei ;
Boioli, Francesca ;
Kavanagh, Karen L. ;
Zheng, He ;
Wang, Jian ;
Mack, Nathan H. ;
Swadener, Greg ;
Huang, Jian Yu ;
Miglio, Leo ;
Tu, King-Ning ;
Picraux, S. Tom .
NANO LETTERS, 2013, 13 (05) :1869-1876
[6]   Advanced core/multishell germanium/silicon nanowire heterostructures: The Au-diffusion bottleneck [J].
Dayeh, Shadi A. ;
Mack, Nathan H. ;
Huang, Jian Yu ;
Picraux, S. T. .
APPLIED PHYSICS LETTERS, 2011, 99 (02)
[7]   Direct Observation of Nanoscale Size Effects in Ge Semiconductor Nanowire Growth [J].
Dayeh, Shadi A. ;
Picraux, S. T. .
NANO LETTERS, 2010, 10 (10) :4032-4039
[8]  
Dillen DC, 2014, NAT NANOTECHNOL, V9, P116, DOI [10.1038/nnano.2013.301, 10.1038/NNANO.2013.301]
[9]   Synthesis and Strain Relaxation of Ge-Core/Si-Shell Nanowire Arrays [J].
Goldthorpe, Irene A. ;
Marshall, Ann F. ;
McIntyre, Paul C. .
NANO LETTERS, 2008, 8 (11) :4081-4086
[10]   Inhibiting Strain-Induced Surface Roughening: Dislocation-Free Ge/Si and Ge/SiGe Core-Shell Nanowires [J].
Goldthorpe, Irene A. ;
Marshall, Ann F. ;
McIntyre, Paul C. .
NANO LETTERS, 2009, 9 (11) :3715-3719