PROSTATE CANCER DETECTION AND SEGMENTATION IN MULTI-PARAMETRIC MRI VIA CNN AND CONDITIONAL RANDOM FIELD

被引:0
作者
Cao, Ruiming [1 ,2 ]
Zhong, Xinran [1 ]
Shakeri, Sepideh [1 ]
Bajgiran, Amirhassein Mohammadian [1 ]
Mirak, Sohrab Afshari [1 ]
Enzmann, Dieter [1 ]
Raman, Steven S. [1 ]
Sung, Kyunghyun [1 ]
机构
[1] Univ Calif Los Angeles, Radiol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Comp Sci, Los Angeles, CA 90095 USA
来源
2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019) | 2019年
关键词
Computer-aided detection and diagnosis; prostate cancer; MRI; convolutional neural networks;
D O I
10.1109/isbi.2019.8759584
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Multi-parametric MRI (mp-MRI) is a powerful diagnostic tool for prostate cancer (I)Ca). However, interpreting prostate tup-MRI requires high-level expertise, causing significant, inter-reader variations. Convolutional neural networks (CNNs) have recently shown great promise for various tasks, In this study, we propose an improved CNN to jointly detect PCa lesions and segment for accurate lesions contours. Specifically, we adapt focal loss to overcome the imbalance between cancerous and non-cancerous areas for improved lesion detection and design selective dense conditional random field (SD-CRF), a post-processing step to refine the CNN prediction into the lesion segmentation based on a specific imaging component of mp-MR1, We trained and validated the proposed CNN in 5-fold cross-validation using 397 preoperative mp-MRI exams with whole-mount histopathologyconfirmed lesion annotations. In the free-response receiver operating characteristics (IROC) analysis, the proposed CNN achieved 75.1% lesion detection sensitivity at the cost of 1 false positive per patient. In the evaluation for lesion segmentation, the proposed CNN improved the Dice coefficient by 20.6% from the baseline CNN.
引用
收藏
页码:1900 / 1904
页数:5
相关论文
共 17 条
[1]   Fast Keyframe Selection and Switching for ICP-based Camera Pose Estimation [J].
Chen, Chun-Wei ;
Hsiao, Wen-Yuan ;
Lin, Ting-Yu ;
Wang, Jonas ;
Shieh, Ming-Der .
2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
[2]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[3]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[4]  
Kiraly Atilla P., 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10435, P489, DOI 10.1007/978-3-319-66179-7_56
[5]  
Kr_ahenb_uhl P., 2011, ADV NEURAL INF PROCE, P109, DOI DOI 10.5555/2986459.2986472
[6]   Computer-Aided Detection of Prostate Cancer inMRI [J].
Litjens, Geert ;
Debats, Oscar ;
Barentsz, Jelle ;
Karssemeijer, Nico ;
Huisman, Henkjan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (05) :1083-1092
[7]   The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) [J].
Menze, Bjoern H. ;
Jakab, Andras ;
Bauer, Stefan ;
Kalpathy-Cramer, Jayashree ;
Farahani, Keyvan ;
Kirby, Justin ;
Burren, Yuliya ;
Porz, Nicole ;
Slotboom, Johannes ;
Wiest, Roland ;
Lanczi, Levente ;
Gerstner, Elizabeth ;
Weber, Marc-Andre ;
Arbel, Tal ;
Avants, Brian B. ;
Ayache, Nicholas ;
Buendia, Patricia ;
Collins, D. Louis ;
Cordier, Nicolas ;
Corso, Jason J. ;
Criminisi, Antonio ;
Das, Tilak ;
Delingette, Herve ;
Demiralp, Cagatay ;
Durst, Christopher R. ;
Dojat, Michel ;
Doyle, Senan ;
Festa, Joana ;
Forbes, Florence ;
Geremia, Ezequiel ;
Glocker, Ben ;
Golland, Polina ;
Guo, Xiaotao ;
Hamamci, Andac ;
Iftekharuddin, Khan M. ;
Jena, Raj ;
John, Nigel M. ;
Konukoglu, Ender ;
Lashkari, Danial ;
Mariz, Jose Antonio ;
Meier, Raphael ;
Pereira, Sergio ;
Precup, Doina ;
Price, Stephen J. ;
Raviv, Tammy Riklin ;
Reza, Syed M. S. ;
Ryan, Michael ;
Sarikaya, Duygu ;
Schwartz, Lawrence ;
Shin, Hoo-Chang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) :1993-2024
[8]   Magnetic Resonance Imaging Underestimation of Prostate Cancer Geometry: Use of Patient Specific Molds to Correlate Images with Whole Mount Pathology [J].
Priester, Alan ;
Natarajan, Shyam ;
Khoshnoodi, Pooria ;
Margolis, Daniel J. ;
Raman, Steven S. ;
Reiter, Robert E. ;
Huang, Jiaoti ;
Grundfest, Warren ;
Marks, Leonard S. .
JOURNAL OF UROLOGY, 2017, 197 (02) :320-326
[9]   MRI of the prostate: Interobserver agreement compared with histopathologic outcome after radical prostatectomy [J].
Ruprecht, Oliver ;
Weisser, Philipp ;
Bodelle, Boris ;
Ackermann, Hanns ;
Vogl, Thomas J. .
EUROPEAN JOURNAL OF RADIOLOGY, 2012, 81 (03) :456-460
[10]   Differentiation of noncancerous tissue and cancer lesions by apparent diffusion coefficient values in transition and peripheral zones of the prostate [J].
Sato, C ;
Naganawa, S ;
Nakamura, T ;
Kumada, H ;
Miura, S ;
Takizawa, O ;
Ishigaki, T .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2005, 21 (03) :258-262