A pure and stable intermediate phase is key to growing aligned and vertically monolithic perovskite crystals for efficient PIN planar perovskite solar cells with high processibility and stability

被引:167
作者
Bai, Yang [1 ]
Xiao, Shuang [1 ]
Hu, Chen [1 ]
Zhang, Teng [1 ]
Meng, Xiangyue [1 ]
Li, Qiang [2 ]
Yang, Yinglong [1 ]
Wong, Kam Sing [2 ]
Chen, Haining [3 ]
Yang, Shihe [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Chem, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China
[3] Beihang Univ, Sch Mat Sci & Engn, Beijing, Peoples R China
关键词
Perovskite; Intermediate phase; Inverted planar solar cell; Vertically monolithic crystal; SOLUTION-PROCESSED PEROVSKITE; HIGH-PERFORMANCE; HOLE-EXTRACTION; BASE ADDUCT; ELECTRON; LAYER; CRYSTALLIZATION; THIN; NANOCRYSTALS; HYSTERESIS;
D O I
10.1016/j.nanoen.2017.02.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solvent engineering has been extensively used to control the growth of a high-quality perovskite layer for solar cells by forming intermediate phases. However, the intermediate phase formation is often poorly understood and its effects on the perovskite layer growth are still elusive. Here, we have conducted a systematic and in-depth study on the above two issues through a strict control over the DMSO/DMF ratio in CH3NH3PbI3 perovskite solutions, and thus an effective control over the compositions of intermediate films. The films thus obtained, including perovskite, perovskite/MA(2)Pb(3)I(8)(DMSO)(2) and MA(2)Pb(3)I(8)(DMSO)(2), afford perovskite crystals via down-growth, down-and up-growth, and up-growth mechanisms, respectively. Significantly, the up-growth perovskite crystals from the pure MA(2)Pb(3)I(8)(DMSO)(2) exhibits the best interface contact with NiO substrate, optimal alignment without horizontal grain boundaries and a relatively large grain size, which facilitate charge transfer and reduce charge recombination in PSCs. As a result, the PIN planar PSCs based on NiO have achieved a PCE of 18.4%, a value which is among the highest for NiO-based PSCs, with the highest stability among the tested sample cells. Furthermore, the pure MA(2)Pb(3)I(8)(DMSO)(2) intermediate phase presents a high long-term stability, which enlarges the operating window for perovskite deposition and thus considerably improves the device processibility.
引用
收藏
页码:58 / 68
页数:11
相关论文
共 49 条
[1]   Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide [J].
Ahn, Namyoung ;
Son, Dae-Yong ;
Jang, In-Hyuk ;
Kang, Seong Min ;
Choi, Mansoo ;
Park, Nam-Gyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (27) :8696-8699
[2]  
[Anonymous], 2015, ADV ENERGY MAT
[3]   Effects of a Molecular Monolayer Modification of NiO Nanocrystal Layer Surfaces on Perovskite Crystallization and Interface Contact toward Faster Hole Extraction and Higher Photovoltaic Performance [J].
Bai, Yang ;
Chen, Haining ;
Xiao, Shuang ;
Xue, Qifan ;
Zhang, Teng ;
Zhu, Zonglong ;
Li, Qiang ;
Hu, Chen ;
Yang, Yun ;
Hu, Zhicheng ;
Huang, Fei ;
Wong, Kam Sing ;
Yip, Hin-Lap ;
Yang, Shihe .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (17) :2950-2958
[4]   High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer [J].
Bai, Yang ;
Yu, Hui ;
Zhu, Zonglong ;
Jiang, Kui ;
Zhang, Teng ;
Zhao, Ni ;
Yang, Shihe ;
Yan, He .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (17) :9098-9102
[5]   Organometal halide perovskite solar cells: degradation and stability [J].
Berhe, Taame Abraha ;
Su, Wei-Nien ;
Chen, Ching-Hsiang ;
Pan, Chun-Jern ;
Cheng, Ju-Hsiang ;
Chen, Hung-Ming ;
Tsai, Meng-Che ;
Chen, Liang-Yih ;
Dubale, Amare Aregahegn ;
Hwang, Bing-Joe .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (02) :323-356
[6]   Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells [J].
Bryant, Daniel ;
Aristidou, Nicholas ;
Pont, Sebastian ;
Sanchez-Molina, Irene ;
Chotchunangatchaval, Thana ;
Wheeler, Scot ;
Durrant, James R. ;
Haque, Saif A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (05) :1655-1660
[7]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[8]   Identifying the Molecular Structures of Intermediates for Optimizing the Fabrication of High-Quality Perovskite Films [J].
Cao, Jing ;
Jing, Xiaojing ;
Yan, Juanzhu ;
Hu, Chengyi ;
Chen, Ruihao ;
Yin, Jun ;
Li, Jing ;
Zheng, Nanfeng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (31) :9919-9926
[9]   One-step, low-temperature deposited perovskite solar cell utilizing small molecule additive [J].
Chen, Chun-Chao ;
Hong, Zirou ;
Li, Gang ;
Chen, Qi ;
Zhou, Huanping ;
Yang, Yang .
JOURNAL OF PHOTONICS FOR ENERGY, 2015, 5
[10]  
Chen H., 2016, ADV ENERGY MAT, V6