Optical Transfer Properties of Nanosized MoS2-Based One-Dimensional Photonic Crystals

被引:1
作者
Ma, Xiying [1 ]
Gu, Weixia [1 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Math & Phys, Suzhou 215011, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Optical Transfer Properties; MoS2; 1Dphotonic Crystals; Transfer Matrix Method; Photonic Band Gap; TRANSISTORS; EMISSION; HETEROSTRUCTURES; LIGHT; MOS2;
D O I
10.1166/jno.2014.1616
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a study of the optical propagation properties in a one-dimensional (1D) MoS2 photonic crystal (PC) formed by an array of periodic stacks of alternating MoS2 and SiO2 layers embedded in an air environment. The propagation properties for the electromagnetic wave moving in such a structure are studied within the framework of the transfer matrix method. The frequency band structure of the 1D MoS2 photonic crystals is obtained analytically as a function of the thickness of the MoS2 layers and the number of defect layers. We found that for sub-micrometer layer thickness (i.e., 100-200 nm) 1D MoS2 PCs having one or two photonic band gaps (PBG) in 400-800 nm visible light range, the number of PBGs increases with the number of MoS2 or SiO2 defect layers. PCs with a single or 3-5-nm-thick superlattice-structured 1D MoS2 layers are almost transparent because there is no PBG formed in the perfect structure. Moreover, the optical transfer properties for single and 10-nm-thick defect PCs are very similar to those of a semitransparent mirror splitter and a diffraction grating, respectively. These results show that a single layer or a few layers of MoS2 in 1D PCs have a large potential use in the fabrication of a high-efficiency filter and grating and other optoelectronic devices.
引用
收藏
页码:502 / 506
页数:5
相关论文
共 19 条
[1]  
Ashcroft N., 2011, Solid State Physics
[2]   Graphene-based one-dimensional photonic crystal [J].
Berman, Oleg L. ;
Kezerashvili, Roman Ya .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (01)
[3]   Graphene-based photonic crystal [J].
Berman, Oleg L. ;
Boyko, Vladimir S. ;
Kezerashvili, Roman Ya. ;
Kolesnikov, Anton A. ;
Lozovik, Yurii E. .
PHYSICS LETTERS A, 2010, 374 (47) :4784-4786
[4]   Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures [J].
Britnell, L. ;
Gorbachev, R. V. ;
Jalil, R. ;
Belle, B. D. ;
Schedin, F. ;
Mishchenko, A. ;
Georgiou, T. ;
Katsnelson, M. I. ;
Eaves, L. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Leist, J. ;
Geim, A. K. ;
Novoselov, K. S. ;
Ponomarenko, L. A. .
SCIENCE, 2012, 335 (6071) :947-950
[5]   Directional emission from photonic crystal waveguides [J].
Chen, CC ;
Pertsch, T ;
Iliew, R ;
Lederer, F ;
Tünnermann, A .
OPTICS EXPRESS, 2006, 14 (06) :2423-2428
[6]   Enhanced light emission from InAs quantum dots in single-defect photonic crystal microcavities at room temperature [J].
Chen, WY ;
Chang, WH ;
Chang, HS ;
Hsu, TM ;
Lee, CC ;
Chen, CC ;
Luan, PG ;
Chang, JY ;
Hsieh, TP ;
Chyi, JI .
APPLIED PHYSICS LETTERS, 2005, 87 (07)
[7]   A dielectric omnidirectional reflector [J].
Fink, Y ;
Winn, JN ;
Fan, SH ;
Chen, CP ;
Michel, J ;
Joannopoulos, JD ;
Thomas, EL .
SCIENCE, 1998, 282 (5394) :1679-1682
[8]   Diffractionless propagation of light in a low-index photonic-crystal film [J].
Iliew, R ;
Etrich, C ;
Peschel, U ;
Lederer, F ;
Augustin, M ;
Fuchs, HJ ;
Schelle, D ;
Kley, EB ;
Nolte, S ;
Tünnermann, A .
APPLIED PHYSICS LETTERS, 2004, 85 (24) :5854-5856
[10]   A graphene-based broadband optical modulator [J].
Liu, Ming ;
Yin, Xiaobo ;
Ulin-Avila, Erick ;
Geng, Baisong ;
Zentgraf, Thomas ;
Ju, Long ;
Wang, Feng ;
Zhang, Xiang .
NATURE, 2011, 474 (7349) :64-67