Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering

被引:101
作者
Chen, Weiming [1 ]
Ma, Jun [2 ]
Zhu, Lei [3 ]
Morsi, Yosry [4 ]
EI-Hamshary, Hany [5 ,6 ]
Al-Deyab, Salem S. [5 ]
Mo, Xiumei [1 ,7 ]
机构
[1] Donghua Univ, Coll Chem Chem Engn & Biotechnol, Shanghai 201620, Peoples R China
[2] Second Mil Med Univ, Changzheng Hosp, Dept Orthopaed, 415 Fengyang Rd, Shanghai 200003, Peoples R China
[3] Donghua Univ, Coll Mat Sci, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[4] Fac Sci Engn & Technol, Hawthorn, Vic 3122, Australia
[5] King Saud Univ, Coll Sci, Dept Chem, Riyadh 11451, Saudi Arabia
[6] Tanta Univ, Fac Sci, Dept Chem, Tanta 31527, Egypt
[7] Shandong Int Biotechnol Pk Dev Co Ltd, Jinan, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrospinning; Scaffold; Nanofiber; Tissue engineering; Superelastic; FABRICATION; ULTRALIGHT; HYDROGELS; FIBERS; CELLS;
D O I
10.1016/j.colsurfb.2016.02.050
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Fabrication of 3D scaffold to mimic the nanofibrous structure of the nature extracellular matrix (ECM) with appropriate mechanical properties and excellent biocompatibility, remain an important technical challenge in tissue engineering. The present study reports the strategy to fabricate a 3D nanofibrous scaffold with similar structure to collagen in ECM by combining electrospinning and freeze-drying technique. With the technique reported here, a nanofibrous structure scaffold with hydrophilic and superabsorbent properties can be readily prepared by Gelatin and Polylactic acid (PLA). In wet state the scaffold also shows a super-elastic property, which could bear a compressive strain as high as 80% and recovers its original shape afterwards. Moreover, after 6 days of culture, L-929 cells grow, proliferate and infiltrated into the scaffold. The results suggest that this 3D nanofibrous scaffold would be promising for varied field of tissue engineering application. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:165 / 172
页数:8
相关论文
共 39 条
[1]   Self-assembling peptide amphiphile nanofiber matrices for cell entrapment [J].
Beniash, E ;
Hartgerink, JD ;
Storrie, H ;
Stendahl, JC ;
Stupp, SI .
ACTA BIOMATERIALIA, 2005, 1 (04) :387-397
[2]   Electrospinning of collagen and elastin for tissue engineering applications [J].
Buttafoco, L ;
Kolkman, NG ;
Engbers-Buijtenhuijs, P ;
Poot, AA ;
Dijkstra, PJ ;
Vermes, I ;
Feijen, J .
BIOMATERIALS, 2006, 27 (05) :724-734
[3]   Dexamethasone loaded core-shell SF/PEO nanofibers via green electrospinning reduced endothelial cells inflammatory damage [J].
Chen, Weiming ;
Li, Dawei ;
EI-Shanshory, Ahmed ;
El-Newehy, Mohamed ;
EI-Hamshary, Hany A. ;
Al-Deyab, Salem S. ;
He, Chuanglong ;
Mo, Xiumei .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2015, 126 :561-568
[4]   TISSUE ENGINEERING BY CELL TRANSPLANTATION USING DEGRADABLE POLYMER SUBSTRATES [J].
CIMA, LG ;
VACANTI, JP ;
VACANTI, C ;
INGBER, D ;
MOONEY, D ;
LANGER, R .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1991, 113 (02) :143-151
[5]   Ultralight, Soft Polymer Sponges by Self-Assembly of Short Electrospun Fibers in Colloidal Dispersions [J].
Duan, Gaigai ;
Jiang, Shaohua ;
Jerome, Valerie ;
Wendorff, Joachim H. ;
Fathi, Amir ;
Uhm, Jaqueline ;
Altstaedt, Volker ;
Herling, Markus ;
Breu, Josef ;
Freitag, Ruth ;
Agarwal, Seema ;
Greiner, Andreas .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (19) :2850-2856
[6]   Challenges in the Characterization of Plasma-Processed Three-Dimensional Polymeric Scaffolds for Biomedical Applications [J].
Fisher, Ellen R. .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (19) :9312-9321
[7]   Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering [J].
Ghasemi-Mobarakeh, Laleh ;
Prabhakaran, Molamma P. ;
Morshed, Mohammad ;
Nasr-Esfahani, Mohammad-Hossein ;
Ramakrishna, Seeram .
BIOMATERIALS, 2008, 29 (34) :4532-4539
[8]   Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis [J].
Gough, JE ;
Scotchford, CA ;
Downes, S .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 61 (01) :121-130
[9]   Polyurethane scaffold formation via a combination of salt leaching and thermally induced phase separation [J].
Heijkants, R. G. J. C. ;
van Calck, R. V. ;
van Tienen, T. G. ;
de Groot, J. H. ;
Pennings, A. J. ;
Buma, P. ;
Veth, R. P. H. ;
Schouten, A. J. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2008, 87A (04) :921-932
[10]   3D nanofibrous scaffolds for tissue engineering [J].
Holzwarth, Jeremy M. ;
Ma, Peter X. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (28) :10243-10251