A Truncation Method for Solving the Time-Fractional Benjamin-Ono Equation

被引:30
作者
Ali, Mohamed R. [1 ]
机构
[1] Benha Univ, Benha Fac Engn, Dept Math, Banha, Egypt
关键词
Algebra - Nonlinear equations - Ordinary differential equations;
D O I
10.1155/2019/3456848
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deem the time-fractional Benjamin-Ono (BO) equation out of the Riemann-Liouville (RL) derivative by applying the Lie symmetry analysis (LSA). By first using prolongation theorem to investigate its similarity vectors and then using these generators to transform the time-fractional BO equation to a nonlinear ordinary differential equation (NLODE) of fractional order, we complete the solutions by utilizing the power series method (PSM).
引用
收藏
页数:7
相关论文
共 27 条
[1]   On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. ;
Alsaedi, Ahmed .
CHAOS SOLITONS & FRACTALS, 2016, 83 :234-241
[2]   Exponential rational function method for space-time fractional differential equations [J].
Aksoy, Esin ;
Kaplan, Melike ;
Bekir, Ahmet .
WAVES IN RANDOM AND COMPLEX MEDIA, 2016, 26 (02) :142-151
[3]  
[Anonymous], 2007, VESTN USATU
[4]   New exact travelling wave solutions of nonlinear physical models [J].
Bekir, Ahmet ;
Cevikel, Adem C. .
CHAOS SOLITONS & FRACTALS, 2009, 41 (04) :1733-1739
[5]   The symmetry reductions of a turbulence model [J].
Bruzón, MS ;
Clarkson, PA ;
Gandarias, ML ;
Medina, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (18) :3751-3760
[6]  
El-Sabbagh M. F., 2014, IJRRAS, V18, P132
[7]   Optical solitons for the resonant nonlinear Schrodinger's equation with time-dependent coefficients by the first integral method [J].
Eslami, M. ;
Mirzazadeh, M. ;
Vajargah, B. Fathi ;
Biswas, Anjan .
OPTIK, 2014, 125 (13) :3107-3116
[8]  
Eslami M., 2012, J KING SAUD UNIV SCI, V24, P69, DOI [10.1016/j.jksus.2010.08.003, DOI 10.1016/j.jksus.2010.08.003]
[9]   Traveling wave solutions for fractional partial differential equations arising in mathematical physics by an improved fractional Jacobi elliptic equation method [J].
Feng, Qinghua ;
Meng, Fanwei .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (10) :3676-3686
[10]   Extended trial equation method to generalized nonlinear partial differential equations [J].
Gurefe, Yusuf ;
Misirli, Emine ;
Sonmezoglu, Abdullah ;
Ekici, Mehmet .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) :5253-5260