The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II

被引:290
作者
Li, B
Howe, L
Anderson, S
Yates, JR
Workman, JL [1 ]
机构
[1] Penn State Univ, Howard Hughes Med Inst, Dept Biochem & Mol Biol, Althouse Lab 306, University Pk, PA 16802 USA
[2] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA
关键词
CHROMATIN-REMODELING COMPLEX; CYCLIN-DEPENDENT KINASE; SACCHAROMYCES-CEREVISIAE; IN-VIVO; ACETYLTRANSFERASE COMPLEXES; TRANSCRIPTIONAL ACTIVATION; NONPHOSPHORYLATED FORM; PROMOTER NUCLEOSOMES; H3; METHYLTRANSFERASE; SWI/SNF COMPLEX;
D O I
10.1074/jbc.M212134200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The histone methyltransferase Set2, which specifically methylates lysine 36 of histone H3, has been shown to repress transcription upon tethering to a heterologous promoter. However, the mechanism of targeting and the consequence of Set2-dependent methylation have yet to be demonstrated. We sought to identify the protein components associated with Set2 to gain some insights into the in vivo function of this protein. Mass spectrometry analysis of the Set2 complex, purified using a tandem affinity method, revealed that RNA polymerase II (pol II) is associated with Set2. Immunoblotting and immunoprecipitation using antibodies against subunits of pol II confirmed that the phosphorylated form of pot II is indeed an integral part of the Set2 complex. Gst-Set2 preferentially binds to CTD synthetic peptides phosphorylated at serine 2, and to a lesser extent, serine 5 phosphorylated peptides, but has no affinity for unphosphorylated CTD, suggesting that Set2 associates with the elongating form of the pol II. Furthermore, we show that set2Delta ppr2Delta double mutants (PPR2 encodes TFIIS, a transcription elongation factor) are synthetically hypersensitive to 6-azauracil, and that deletions in the CTD reduce in vivo levels of H3 lysine 36 methylation. Collectively, these results suggest that Set2 is involved in regulating transcription elongation through its direct contact with pol II.
引用
收藏
页码:8897 / 8903
页数:7
相关论文
共 87 条
[1]   Histone methylation: Dynamic or static? [J].
Bannister, AJ ;
Schneider, R ;
Kouzarides, T .
CELL, 2002, 109 (07) :801-806
[2]   Methylation at arginine 17 of histone H3 is linked to gene activation [J].
Bauer, UM ;
Daujat, S ;
Nielsen, SJ ;
Nightingale, K ;
Kouzarides, T .
EMBO REPORTS, 2002, 3 (01) :39-44
[3]   RETRACTED: Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1 (Retracted article. See vol. 521, pg. 110, 2015) [J].
Beisel, C ;
Imhof, A ;
Greene, J ;
Kremmer, E ;
Sauer, F .
NATURE, 2002, 419 (6909) :857-862
[4]   Histone modifications in transcriptional regulation [J].
Berger, SL .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2002, 12 (02) :142-148
[5]   Methylation of histone H3 Lys 4 in coding regions of active genes [J].
Bernstein, BE ;
Humphrey, EL ;
Erlich, RL ;
Schneider, R ;
Bouman, P ;
Liu, JS ;
Kouzarides, T ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (13) :8695-8700
[6]   Gene silencing -: Trans-histone regulatory pathway in chromatin [J].
Briggs, SD ;
Xiao, TJ ;
Sun, ZW ;
Caldwell, JA ;
Shabanowitz, J ;
Hunt, DF ;
Allis, CD ;
Strahl, BD .
NATURE, 2002, 418 (6897) :498-498
[7]   Recruitment of HAT complexes by direct activator interactions with the ATM-related tra1 subunit [J].
Brown, CE ;
Howe, L ;
Sousa, K ;
Alley, SC ;
Carrozza, MJ ;
Tan, S ;
Workman, JL .
SCIENCE, 2001, 292 (5525) :2333-2337
[8]   Genetics of transcriptional regulation in yeast: Connections to the RNA polymerase II CTD [J].
Carlson, M .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1997, 13 :1-23
[9]   mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain [J].
Cho, EJ ;
Takagi, T ;
Moore, CR ;
Buratowski, S .
GENES & DEVELOPMENT, 1997, 11 (24) :3319-3326
[10]   Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain [J].
Cho, EJ ;
Kobor, MS ;
Kim, M ;
Greenblatt, J ;
Buratowski, S .
GENES & DEVELOPMENT, 2001, 15 (24) :3319-3329