The conformable space-time fractional mKdV equations and their exact solutions

被引:22
作者
Zafar, Asim [1 ]
Seadawy, Aly R. [2 ,3 ]
机构
[1] CUI, Dept Math, Vehari Campus, Vehari, Pakistan
[2] Taibah Univ, Fac Sci, Dept Math, Al Madinah Al Munawarah, Saudi Arabia
[3] Beni Suef Univ, Fac Sci, Math Dept, Bani Suwayf, Egypt
关键词
Space-time-fractional mKdV equations; Conformable derivatives; Hyperbolic function approach; Exact soliton solutions; GENERAL SOLITON-SOLUTIONS; NONLINEAR SCHRODINGER-EQUATION; TRAVELING-WAVE SOLUTIONS; KDV EQUATION; HIGHER-ORDER; BRIGHT; EXPLICIT;
D O I
10.1016/j.jksus.2019.09.003
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we are interested in exploring the conformable space-time fractional mKdV equations via hyperbolic function approach. A traveling wave transformation and the conformable derivative are used to convert the nonlinear fractional differential equation into a nonlinear ordinary differential equation. Then, the resulting equation is elucidated by utilizing the hyperbolic function approach through Mathematica. A variety of soliton type solutions including, hyperbolic and trigonometric functions, is formulated and the graphical representation for these solutions is given by using MATLAB. (C) 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
引用
收藏
页码:1478 / 1484
页数:7
相关论文
共 46 条
[1]   General Expa-function method for nonlinear evolution equations [J].
Ali, Ahmad T. ;
Hassan, Ezzat R. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (02) :451-459
[2]  
[Anonymous], 1981, SOLITONS INVERSE SCA
[3]  
[Anonymous], 1895, Philos. Mag, DOI [10.1080/14786435.2010.547337, DOI 10.1080/14786435.2010.547337, DOI 10.1080/14786449508620739]
[4]  
Ayati Z, 2017, Nonlinear Eng, V6, P25
[5]   Exact solutions for nonlinear partial differential equation: a new approach [J].
Bai, CL .
PHYSICS LETTERS A, 2001, 288 (3-4) :191-195
[6]   Bright and Dark Soliton Solutions of the (2+1)-Dimensional Evolution Equations [J].
Bekir, Ahmet ;
Cevikel, Adem C. ;
Guner, Ozkan ;
San, Sait .
MATHEMATICAL MODELLING AND ANALYSIS, 2014, 19 (01) :118-126
[7]   Fractional Newton mechanics with conformable fractional derivative [J].
Chung, Won Sang .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 :150-158
[8]  
Eslami M, 2016, NONLINEAR DYNAM, V85, P813, DOI 10.1007/s11071-016-2724-2
[9]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[10]   Benjamin-Feir instability in nonlinear dispersive waves [J].
Helal, M. A. ;
Seadawy, A. R. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (11) :3557-3568